Flow-based cytometric analysis of cell cycle via simulated cell populations

M. Rowan Brown, Huw D. Summers, Paul Rees, Paul J. Smith, Sally C. Chappell, Rachel J. Errington

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

We present a new approach to the handling and interrogating of large flow cytometry data where cell status and function can be described, at the population level, by global descriptors such as distribution mean or co-efficient of variation experimental data. Here we link the "real" data to initialise a computer simulation of the cell cycle that mimics the evolution of individual cells within a larger population and simulates the associated changes in fluorescence intensity of functional reporters. The model is based on stochastic formulations of cell cycle progression and cell division and uses evolutionary algorithms, allied to further experimental data sets, to optimise the system variables. At the population level, the in-silico cells provide the same statistical distributions of fluorescence as their real counterparts; in addition the model maintains information at the single cell level. The cell model is demonstrated in the analysis of cell cycle perturbation in human osteosarcoma tumour cells, using the topoisomerase II inhibitor, ICRF-193. The simulation gives a continuous temporal description of the pharmacodynamics between discrete experimental analysis points with a 24 hour interval; providing quantitative assessment of inter-mitotic time variation, drug interaction time constants and sub-population fractions within normal and polyploid cell cycles. Repeated simulations indicate a model accuracy of ±5%. The development of a simulated cell model, initialized and calibrated by reference to experimental data, provides an analysis tool in which biological knowledge can be obtained directly via interrogation of the in-silico cell population. It is envisaged that this approach to the study of cell biology by simulating a virtual cell population pertinent to the data available can be applied to "generic" cellbased outputs including experimental data from imaging platforms.

Original languageEnglish (US)
JournalPLoS Computational Biology
Volume6
Issue number4
DOIs
StatePublished - Apr 2010

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Flow-based cytometric analysis of cell cycle via simulated cell populations'. Together they form a unique fingerprint.

Cite this