Fabrication of biomimetic bone grafts with multi-material 3D printing

Nicholas Sears, Prachi Dhavalikar, Michael Whitely, Elizabeth Cosgriff-Hernandez

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


Extrusion deposition is a versatile method for the 3D printing of biomaterials such as hydrogels, ceramics, and suspensions. Recently, a new class of emulsion inks were developed that can be used to create tunable, hierarchically porous materials with a cure-on-dispense method. Propylene fumarate dimethacrylate (PFDMA) was selected to fabricate bone grafts using this technology due to its established biocompatibility, osteoconductivity, and good compressive properties. Scaffolds fabricated from PFDMA emulsion inks displayed compressive modulus and yield strength of approximately 15 and 1 MPa, respectively. A decrease in infill (from 100% to 70%) resulted in a six-fold increase in permeability; however, there was also a corollary decrease in mechanical properties. In order to generate scaffolds with increased permeability without sacrificing mechanical strength, a biomimetic approach to scaffold design was used to reinforce the highly porous emulsion inks with a dense cortical shell of thermoplastic polyester. Herein, we present an open source method for printing multi-material bone grafts based on PFDMA polyHIPEs with hierarchical porosity and reinforced with a dense shell of poly(ϵ-caprolactone) (PCL) or poly(lactic acid) (PLA). A multi-modal printing setup was first developed that combined paste extrusion and high temperature thermoplastic extrusion with high positional accuracy in dual deposition. Scaffolds printed with a PCL shell displayed compressive modulus and yield strength of approximately 30 and 3 MPa, respectively. Scaffolds printed with a PLA shell showed compressive modulus and yield strength of approximately 100 and 10 MPa, respectively. By combining this new paste extrusion of emulsion inks with traditional thermoplastic extrusion printing, we have created scaffolds with superior strength that promote cell viability and proliferation of human mesenchymal stem cells. The development of this technique shows great promise for the fabrication of a myriad of other complex tissue engineered scaffolds.

Original languageEnglish (US)
Article number025020
Issue number2
StatePublished - May 22 2017


  • 3D printing
  • bone tissue engineering
  • emulsion inks
  • heirarchical porosity

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Fabrication of biomimetic bone grafts with multi-material 3D printing'. Together they form a unique fingerprint.

Cite this