Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation

C. T. Ammollo, F. Semeraro, J. Xu, N. L. Esmon, C. T. Esmon

Research output: Contribution to journalArticlepeer-review

331 Scopus citations

Abstract

See also Borissoff JI, ten Cate H. From neutrophil extracellular traps release to thrombosis: an overshooting host-defense mechanism? This issue, pp 1791-4. Summary. Background:Histones are basic proteins that contribute to cell injury and tissue damage when released into the extracellular space. They have been attributed a prothrombotic activity, because their injection into mice induces diffuse microvascular thrombosis. The protein C-thrombomodulin (TM) system is a fundamental regulator of coagulation, particularly in the microvasculature, and its activity can be differentially influenced by interaction with several cationic proteins. Objective:To evaluate the effect of histones on the protein C-TM system in a plasma thrombin generation assay and in purified systems. Methods:The effect of histones on plasma thrombin generation in the presence or absence of TM was analyzed by calibrated automated thrombinography. Protein C activation in purified systems was evaluated by chromogenic substrate cleavage. The binding of TM and protein C to histones was evaluated by solid-phase binding assay. Results:Histones dose-dependently increased plasma thrombin generation in the presence of TM, independently of its chondroitin sulfate moiety. This effect was not caused by inhibition of activated protein C activity, but by the impairment of TM-mediated protein C activation. Histones were able to bind to both protein C and TM, but the carboxyglutamic acid domain of protein C was required for their effect. Histones H4 and H3 displayed the highest activity. Importantly, unlike heparin, DNA did not inhibit the potentiating effect of histones on thrombin generation. Conclusions:Histones enhance plasma thrombin generation by reducing TM-dependent protein C activation. This mechanism might contribute to microvascular thrombosis induced by histones in vivo at sites of organ failure or severe inflammation.

Original languageEnglish (US)
Pages (from-to)1795-1803
Number of pages9
JournalJournal of Thrombosis and Haemostasis
Volume9
Issue number9
DOIs
StatePublished - Sep 2011

Keywords

  • Histones
  • Protein C
  • Thrombin generation
  • Thrombomodulin
  • Thrombosis

ASJC Scopus subject areas

  • Hematology

Fingerprint

Dive into the research topics of 'Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation'. Together they form a unique fingerprint.

Cite this