Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response

Paul Sumby, Kent D. Barbian, Donald J. Gardner, Adeline R. Whitney, Diane M. Welty, R. Daniel Long, John R. Bailey, Michael J. Parnell, Nancy P. Hoe, Gerald G. Adams, Frank R. DeLeo, James M. Musser

Research output: Contribution to journalArticle

231 Scopus citations

Abstract

Many pathogenic bacteria produce extracellular DNase, but the benefit of this enzymatic activity is not understood. For example, all strains of the human bacterial pathogen group A Streptococcus (GAS) produce at least one extracellular DNase, and most strains make several distinct enzymes. Despite six decades of study, it is not known whether production of DNase by GAS enhances virulence. To test the hypothesis that extracellular DNase is required for normal progression of GAS infection, we generated seven isogenic mutant strains in which the three chromosomal- and prophage-encoded DNases made by a contemporary serotype M1 GAS strain were inactivated. Compared to the wild-type parental strain, the isogenic triple-mutant strain was significantly less virulent in two mouse models of invasive infection. The triple-mutant strain was cleared from the skin injection site significantly faster than the wild-type strain. Preferential clearance of the mutant strain was related to the differential extracellular killing of the mutant and wild-type strains, possibly through degradation of neutrophil extracellular traps, innate immune structures composed of chromatin and granule proteins. The triple-mutant strain was also significantly compromised in its ability to cause experimental pharyngeal disease in cynomolgus macaques. Comparative analysis of the seven DNase mutant strains strongly suggested that the prophage-encoded SdaD2 enzyme is the major DNase that contributes to virulence in this clone. We conclude that extracellular DNase activity made by GAS contributes to disease progression, thereby resolving a long-standing question in bacterial pathogenesis research.

Original languageEnglish (US)
Pages (from-to)1679-1684
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume102
Issue number5
DOIs
StatePublished - Feb 1 2005

Keywords

  • Neutrophil extracellular traps
  • Streptococcus pyogenes
  • Virulence factor

ASJC Scopus subject areas

  • Genetics
  • General

Fingerprint Dive into the research topics of 'Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response'. Together they form a unique fingerprint.

Cite this