Expression and subcellular localization of estrogen receptors α and β in human fetal brown adipose tissue

Ksenija Velickovic, Aleksandra Cvoro, Biljana Srdic, Edita Stokic, Milica Markelic, Igor Golic, Vesna Otasevic, Ana Stancic, Aleksandra Jankovic, Milica Vucetic, Biljana Buzadzic, Bato Korac, Aleksandra Korac

Research output: Contribution to journalArticle

34 Scopus citations

Abstract

Context: Brown adipose tissue (BAT) has the unique ability of generating heat due to the expression of mitochondrial uncoupling protein 1 (UCP1). A recent discovery regarding functional BAT in adult humans has increased interest in the molecular pathways of BAT development and functionality. An important role for estrogen in white adipose tissue was shown, but the possible role of estrogen in human fetal BAT (fBAT) is unclear. Objective: The objective of this study was to determine whether human fBAT expresses estrogen receptor α (ERα) and ERβ. In addition, we examined their localization as well as their correlation with crucial proteins involved in BAT differentiation, proliferation, mitochondriogenesis and thermogenesis including peroxisome proliferator-activated receptor γ (PPARγ), proliferating cell nuclear antigen (PCNA), PPARγ-coactivator-1α (PGC-1α), and UCP1. Design: The fBAT was obtained from 4humanmale fetuses aged 15, 17, 20, and 23 weeks gestation. ERα and ERβ expression was assessed using Western blotting, immunohistochemistry, and immunocytochemistry. Possible correlations with PPARγ, PCNA, PGC-1α, and UCP1 were examined by double immunofluorescence. Results: Both ERα and ERβ were expressed in human fBAT, with ERα being dominant. Unlike ERβ, which was present only in mature brown adipocytes, we detected ERα in mature adipocytes, preadipocytes, mesenchymal and endothelial cells. In addition, double immunofluorescence supported the notion that differentiation in fBAT probably involves ERα. Immunocytochemical analysis revealed mitochondrial localization of both receptors. Conclusion: The expression of both ERα and ERβ in human fBAT suggests a role for estrogen in its development, primarily via ERα. In addition, our results indicate that fBAT mitochondria could be targeted by estrogens and pointed out the possible role of both ERs in mitochondriogenesis. (J Clin Endocrinol Metab 99: 151-159, 2014).

Original languageEnglish (US)
Pages (from-to)151-159
Number of pages9
JournalJournal of Clinical Endocrinology and Metabolism
Volume99
Issue number1
DOIs
StatePublished - Jan 1 2014

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Endocrinology
  • Clinical Biochemistry
  • Biochemistry, medical

Fingerprint Dive into the research topics of 'Expression and subcellular localization of estrogen receptors α and β in human fetal brown adipose tissue'. Together they form a unique fingerprint.

Cite this