Exposure of Clinical MRSA Heterogeneous Strains to β-Lactams Redirects Metabolism to Optimize Energy Production through the TCA Cycle

Mignon A. Keaton, Roberto R. Rosato, Konrad B. Plata, Christopher R. Singh, Adriana E. Rosato

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important pathogens both in health care and community-onset infections. The prerequisite for methicillin resistance is mecA, which encodes a β-lactam-insensitive penicillin binding protein PBP2a. A characteristic of MRSA strains from hospital and community associated infections is their heterogeneous expression of resistance to β-lactam (HeR) in which only a small portion (≤0.1%) of the population expresses resistance to oxacillin (OXA) ≥10 μg/ml, while in other isolates, most of the population expresses resistance to a high level (homotypic resistance, HoR). The mechanism associated with heterogeneous expression requires both increase expression of mecA and a mutational event that involved the triggering of a β-lactam-mediated SOS response and related lexA and recA genes. In the present study we investigated the cellular physiology of HeR-MRSA strains during the process of β-lactam-mediated HeR/HoR selection at sub-inhibitory concentrations by using a combinatorial approach of microarray analyses and global biochemical profiling employing gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to investigate changes in metabolic pathways and the metabolome associated with β-lactam-mediated HeR/HoR selection in clinically relevant heterogeneous MRSA. We found unique features present in the oxacillin-selected SA13011-HoR derivative when compared to the corresponding SA13011-HeR parental strain that included significant increases in tricarboxyl citric acid (TCA) cycle intermediates and a concomitant decrease in fermentative pathways. Inactivation of the TCA cycle enzyme cis-aconitase gene in the SA13011-HeR strain abolished β-lactam-mediated HeR/HoR selection demonstrating the significance of altered TCA cycle activity during the HeR/HoR selection. These results provide evidence of both the metabolic cost and the adaptation that HeR-MRSA clinical strains undergo when exposed to β-lactam pressure, indicating that the energy production is redirected to supply the cell wall synthesis/metabolism, which in turn contributes to the survival response in the presence of β-lactam antibiotics.

Original languageEnglish (US)
Article numbere71025
JournalPLoS ONE
Issue number8
StatePublished - Aug 5 2013

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Exposure of Clinical MRSA Heterogeneous Strains to β-Lactams Redirects Metabolism to Optimize Energy Production through the TCA Cycle'. Together they form a unique fingerprint.

Cite this