Evaluation of dynamic response and biomechanical properties of isolated blood vessels.

Mirko Rosic, Suzana Pantovic, Vladimir Rankovic, Zdravko Obradovic, Nenad Filipovic, Milos Kojic

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In this study we present the experimental and mathematical model for a precise assessment of isolated blood vessels dynamic response under a sudden change of blood pressure. Only the end points within the time interval of the considered dynamic response of the blood vessel, or so-called "alternate steady states" of the processes, were usually considered in various studies. These studies do not provide an insight how the process variables change between these alternate steady states. Isolated blood vessels (rat abdominal aorta) were used to determine how the process dynamics can be described in detailed quantitative terms by mathematical parameters. The experimental model and mathematical procedures presented in this study describe precisely (at a high sensitivity level) the time history of the pressure and the diameter change in between alternate steady states, when an abrupt change of blood pressure occurs at the vessel outlet. Also, the experimental model and mathematical procedures were used to determine changes in the stress-strain law, caused by the action of L-arginine. The presented experimental design and mathematical model can be used for assessment of isolated blood vessel dynamic responses under different stimuli, such as drug effects, electrostimulation etc.

Original languageEnglish (US)
Pages (from-to)966-972
Number of pages7
JournalJournal of biochemical and biophysical methods
Volume70
Issue number6
DOIs
StatePublished - Apr 24 2008

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry

Fingerprint

Dive into the research topics of 'Evaluation of dynamic response and biomechanical properties of isolated blood vessels.'. Together they form a unique fingerprint.

Cite this