TY - JOUR
T1 - ERK signaling is essential for macrophage development
AU - Richardson, Edward T.
AU - Shukla, Supriya
AU - Nagy, Nancy
AU - Boom, W. Henry
AU - Beck, Rose C.
AU - Zhou, Lan
AU - Landreth, Gary E.
AU - Harding, Clifford V.
N1 - Publisher Copyright:
© 2015 Richardson et al.
PY - 2015/10/7
Y1 - 2015/10/7
N2 - Macrophages depend on colony stimulating factor 1 (also known as M-CSF) for their growth and differentiation, but the requirements for intracellular signals that lead to macrophage differentiation and function remain unclear. M-CSF is known to activate ERK1 and ERK2, but the importance of this signaling pathway in macrophage development is unknown. In these studies, we characterized a novel model of Erk1-/- Erk2flox/flox Lyz2Cre/Cre mice in which the ERK2 isoform is deleted from macrophages in the background of global ERK1 deficiency. Cultures of M-CSF-stimulated bone marrow precursors from these mice yielded reduced numbers of macrophages. Whereas macrophages developing from M-CSF-stimulated bone marrow of Erk2flox/flox Lyz2Cre/Cre mice showed essentially complete loss of ERK2 expression, the reduced number of macrophages that develop from Erk1-/- Erk2flox/flox Lyz2Cre/Cre bone marrow show retention of ERK2 expression, indicating selective outgrowth of a small proportion of precursors in which Cre-mediated deletion failed to occur. The bone marrow of Erk1-/- Erk2flox/flox Lyz2Cre/Cre mice was enriched for CD11b+ myeloid cells, CD11bhi Gr-1hi neutrophils, Lin- c-Kit+ Sca-1+ hematopoietic stem cells, and Lin- c-Kit+ CD34+ CD16/32+ granulocyte-macrophage progenitors. Culture of bone marrow Lin-cells under myeloid-stimulating conditions yielded reduced numbers of monocytes. Collectively, these data indicate that the defect in production of macrophages is not due to a reduced number of progenitors, but rather due to reduced ability of progenitors to proliferate and produce macrophages in response to M-CSF-triggered ERK signaling. Macrophages from Erk1-/- Erk2flox/flox Lyz2Cre/Cre bone marrow showed reduced induction of M-CSF-regulated genes that depend on the ERK pathway for their expression. These data demonstrate that ERK1/ERK2 play a critical role in driving M-CSF-dependent proliferation of bone marrow progenitors for production of macrophages.
AB - Macrophages depend on colony stimulating factor 1 (also known as M-CSF) for their growth and differentiation, but the requirements for intracellular signals that lead to macrophage differentiation and function remain unclear. M-CSF is known to activate ERK1 and ERK2, but the importance of this signaling pathway in macrophage development is unknown. In these studies, we characterized a novel model of Erk1-/- Erk2flox/flox Lyz2Cre/Cre mice in which the ERK2 isoform is deleted from macrophages in the background of global ERK1 deficiency. Cultures of M-CSF-stimulated bone marrow precursors from these mice yielded reduced numbers of macrophages. Whereas macrophages developing from M-CSF-stimulated bone marrow of Erk2flox/flox Lyz2Cre/Cre mice showed essentially complete loss of ERK2 expression, the reduced number of macrophages that develop from Erk1-/- Erk2flox/flox Lyz2Cre/Cre bone marrow show retention of ERK2 expression, indicating selective outgrowth of a small proportion of precursors in which Cre-mediated deletion failed to occur. The bone marrow of Erk1-/- Erk2flox/flox Lyz2Cre/Cre mice was enriched for CD11b+ myeloid cells, CD11bhi Gr-1hi neutrophils, Lin- c-Kit+ Sca-1+ hematopoietic stem cells, and Lin- c-Kit+ CD34+ CD16/32+ granulocyte-macrophage progenitors. Culture of bone marrow Lin-cells under myeloid-stimulating conditions yielded reduced numbers of monocytes. Collectively, these data indicate that the defect in production of macrophages is not due to a reduced number of progenitors, but rather due to reduced ability of progenitors to proliferate and produce macrophages in response to M-CSF-triggered ERK signaling. Macrophages from Erk1-/- Erk2flox/flox Lyz2Cre/Cre bone marrow showed reduced induction of M-CSF-regulated genes that depend on the ERK pathway for their expression. These data demonstrate that ERK1/ERK2 play a critical role in driving M-CSF-dependent proliferation of bone marrow progenitors for production of macrophages.
UR - http://www.scopus.com/inward/record.url?scp=84948674383&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84948674383&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0140064
DO - 10.1371/journal.pone.0140064
M3 - Article
C2 - 26445168
AN - SCOPUS:84948674383
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0140064
ER -