@inbook{09dd860a0f8348ca99f3f844953553f1,
title = "Epithelial mesenchymal transition in aggressive lung cancers",
abstract = "The progression of a cancer cell into a metastatic entity contributes to more than 90 % of cancer related deaths. Therefore, the prevention and treatment of metastasis is an unmet clinical need. Epithelial to mesenchymal transition (EMT) is an evolutionary conserved developmental program, which is induced during cancer progression and contributes to metastatic colonization. EMT endows metastatic properties upon cancer cells by enhancing mobility, invasion, and resistance to apoptotic stimuli. Furthermore, EMT-derived tumor cells acquire stem cell properties and exhibit therapeutic resistance. The disseminated tumor cells recruited to distant organs are suggested to subsequently undergo an EMT reversion through mesenchymal to epithelial transition (MET), necessary for effi cient colonization and macrometastasis. A major focus of cancer research is to determine the cellular and molecular mechanisms underlying EMT/MET in tumor invasion, dissemination and metastasis. In this chapter, we will focus on the contribution of the EMT signaling pathways in lung cancer progression, cancer stem cells and acquired resistance to EGFR tyrosine kinase inhibitors and chemotherapy. We will also discuss the potential of targeting EMT pathways as an attractive strategy for the treatment of lung cancer.",
keywords = "Cancer stem cells, Epithelial mesenchymal transition, Lung cancer, Metastasis, Resistance, Therapy",
author = "Vivek Mittal",
note = "Funding Information: We thank Sharrell Lee for reading the manuscript. VM is supported by NIH grants and by Cornell Center on the Microenvironment and Metastasis through Award Number U54CA143876 from the National Cancer Institute, and the Neuberger Berman Lung Cancer Center. The authors apologize for studies that could not be included due to space limitations. Publisher Copyright: {\textcopyright} Springer International Publishing Switzerland 2016.",
year = "2016",
month = oct,
day = "1",
doi = "10.1007/978-3-319-24932-2_3",
language = "English (US)",
series = "Advances in Experimental Medicine and Biology",
publisher = "Springer New York",
pages = "37--56",
booktitle = "Advances in Experimental Medicine and Biology",
address = "United States",
}