TY - JOUR
T1 - Epithelial-mesenchymal transition delayed by E-cad to promote tissue formation in hepatic differentiation of mouse embryonic stem cells in vitro
AU - Hu, Anbin
AU - Shang, Changzhen
AU - Li, Qiang
AU - Sun, Nianfeng
AU - Wu, Linwei
AU - Ma, Yi
AU - Jiao, Xingyuan
AU - Min, Jun
AU - Zeng, Gucheng
AU - He, Xiaoshun
N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014/4/15
Y1 - 2014/4/15
N2 - Hepatic differentiation of embryonic stem cells (ESCs) usually results in a single cell lineage, and the formation of liver tissues remains difficult. Here, we examine the role of epithelial-mesenchymal transition (EMT) that is regulated by epithelial cadherin (E-cad) expression in hepatic tissue formation from ESCs. E-cad was transfected into mouse ESCs to enable a stable expression of E-cad. Hepatic differentiation of ESCs was then induced by hepatic growth factors. Wnt/β-catenin signaling and EMT speed were examined to determine the differentiation process. Hepatic and angiogenesis markers, as well as differentiated cell-adhesive force were also examined to identify the hepatic tissue differentiation. In our results, E-cad expression gradually decreased in normal ESC (N-ESC) differentiation, but remained stable in the E-cad transfected ESC (EC-ESC) group. In EC-ESC differentiation, expressions of cytoplastic β-catenin and EMT were much lower and significantly prolonged. Angiogenesis markers vascular endothelial growth factor receptor-1 (VEGFR-1) and CD31/PECAM-1 were expressed only on day 5-13 in N-ESC differentiation, whereas VEGFR-1 and CD31/PECAM-1 were expressed prolonged on day 5-17 in the EC-ESC group and were coincident with the expression of hepatic markers. Finally, EC-ESC differentiation maintained multilayer-growth patterns, and abundant vascular network structures appeared and migrated in albumin-positive cell areas. The cellular adhesion forces between embryonic body cells in EC-ESC differentiation during day 13-17 were similar to those of mouse liver tissue. In conclusion, accelerated EMT due to the decreased E-cad expression may partially contribute to the failure of hepatic tissue formation in N-ESC differentiation. E-cad can act in synergy with hepatic growth factors and facilitate the early-stage formation of hepatic tissues through down-regulating Wnt/β-catenin signaling and delaying EMT. This work provides a new insight into hepatic tissue differentiation that is mediated by E-cad from ESC.
AB - Hepatic differentiation of embryonic stem cells (ESCs) usually results in a single cell lineage, and the formation of liver tissues remains difficult. Here, we examine the role of epithelial-mesenchymal transition (EMT) that is regulated by epithelial cadherin (E-cad) expression in hepatic tissue formation from ESCs. E-cad was transfected into mouse ESCs to enable a stable expression of E-cad. Hepatic differentiation of ESCs was then induced by hepatic growth factors. Wnt/β-catenin signaling and EMT speed were examined to determine the differentiation process. Hepatic and angiogenesis markers, as well as differentiated cell-adhesive force were also examined to identify the hepatic tissue differentiation. In our results, E-cad expression gradually decreased in normal ESC (N-ESC) differentiation, but remained stable in the E-cad transfected ESC (EC-ESC) group. In EC-ESC differentiation, expressions of cytoplastic β-catenin and EMT were much lower and significantly prolonged. Angiogenesis markers vascular endothelial growth factor receptor-1 (VEGFR-1) and CD31/PECAM-1 were expressed only on day 5-13 in N-ESC differentiation, whereas VEGFR-1 and CD31/PECAM-1 were expressed prolonged on day 5-17 in the EC-ESC group and were coincident with the expression of hepatic markers. Finally, EC-ESC differentiation maintained multilayer-growth patterns, and abundant vascular network structures appeared and migrated in albumin-positive cell areas. The cellular adhesion forces between embryonic body cells in EC-ESC differentiation during day 13-17 were similar to those of mouse liver tissue. In conclusion, accelerated EMT due to the decreased E-cad expression may partially contribute to the failure of hepatic tissue formation in N-ESC differentiation. E-cad can act in synergy with hepatic growth factors and facilitate the early-stage formation of hepatic tissues through down-regulating Wnt/β-catenin signaling and delaying EMT. This work provides a new insight into hepatic tissue differentiation that is mediated by E-cad from ESC.
UR - http://www.scopus.com/inward/record.url?scp=84898755047&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898755047&partnerID=8YFLogxK
U2 - 10.1089/scd.2013.0354
DO - 10.1089/scd.2013.0354
M3 - Article
C2 - 24266635
AN - SCOPUS:84898755047
SN - 1547-3287
VL - 23
SP - 877
EP - 887
JO - Stem Cells and Development
JF - Stem Cells and Development
IS - 8
ER -