TY - JOUR
T1 - Enhanced systemic T-cell activation after in situ gene therapy with radiotherapy in prostate cancer patients
AU - Satoh, Takefumi
AU - Teh, Bin S.
AU - Timme, Terry L.
AU - Mai, Wei Yuan
AU - Gdor, Yehoshua
AU - Kusaka, Nobuyuki
AU - Fujita, Tetsuo
AU - Pramudji, Christina K.
AU - Vlachaki, Maria T.
AU - Ayala, Gustavo
AU - Wheeler, Thomas
AU - Amato, Robert
AU - Miles, Brian J.
AU - Kadmon, Dov
AU - Butler, Edward Brian
AU - Thompson, Timothy C.
PY - 2004/6/1
Y1 - 2004/6/1
N2 - Purpose In situ cytotoxic gene therapy can potentially trigger a systemic immune response, which could impact occult metastatic disease. We are currently conducting three clinical trials using in situ adenoviral vector mediated herpes simplex virus-thymidine kinase (HSV-tk) gene delivery followed by the HSV-tk prodrug ganciclovir (GCV) or valacyclovir (VCV). This study evaluates the systemic T-cell response after gene therapy in each trial. Methods and materials The study protocol included three separate clinical trials in the Baylor Prostate Cancer SPORE Program: Trial A gene therapy in prostate cancer patients failing radiotherapy (36 patients), Trial B neoadjuvant gene therapy in pre-radical prostatectomy patients (22 patients), and Trial C gene therapy in combination with radiotherapy for prostate cancer (27 patients). Heparinized blood was collected at the time of vector injection and at selected intervals afterward. A complete blood count was performed, and peripheral blood lymphocytes were analyzed by fluorescent antibody cell sorting after labeling with dual color-labeled antibody pairs. Results The pretreatment mean percentage of activated CD8+ T cells (DR+CD8+ T cells) was 12.23%, 16.72%, and 14.09% (Trials A, B, and C, respectively). Two weeks posttreatment, this increased to 22.87%, 26.15%, and 39.04% (Trials A, B, and C, respectively), and these increases were statistically significant (p = 0.0188, p = 0.0010, p < 0.0001, respectively). The increase of DR+CD8+ T cells was significantly larger in Trial C than in Trial A (p = 0.0044) or Trial B (p = 0.0288). Total CD8+ T cells significantly increased at 2 weeks posttreatment in Trial B and C (p = 0.0013, p = 0.0004, respectively). Interestingly, only in Trial C were significant increases in activated CD4+ T cells seen at 2 weeks (p = 0.0035). Conclusions This is the first report of systemic T-cell responses after HSV-tk+GCV/VCV gene therapy under three clinical trial conditions. There was an increase in activated CD8+ T cells in the peripheral blood after vector injection, suggesting the potential for activation of components of cell-mediated immune response in all trial conditions. The addition of radiotherapy to in situ gene therapy seems to further increase the total CD8+ T cells and activated CD4+ T cells.
AB - Purpose In situ cytotoxic gene therapy can potentially trigger a systemic immune response, which could impact occult metastatic disease. We are currently conducting three clinical trials using in situ adenoviral vector mediated herpes simplex virus-thymidine kinase (HSV-tk) gene delivery followed by the HSV-tk prodrug ganciclovir (GCV) or valacyclovir (VCV). This study evaluates the systemic T-cell response after gene therapy in each trial. Methods and materials The study protocol included three separate clinical trials in the Baylor Prostate Cancer SPORE Program: Trial A gene therapy in prostate cancer patients failing radiotherapy (36 patients), Trial B neoadjuvant gene therapy in pre-radical prostatectomy patients (22 patients), and Trial C gene therapy in combination with radiotherapy for prostate cancer (27 patients). Heparinized blood was collected at the time of vector injection and at selected intervals afterward. A complete blood count was performed, and peripheral blood lymphocytes were analyzed by fluorescent antibody cell sorting after labeling with dual color-labeled antibody pairs. Results The pretreatment mean percentage of activated CD8+ T cells (DR+CD8+ T cells) was 12.23%, 16.72%, and 14.09% (Trials A, B, and C, respectively). Two weeks posttreatment, this increased to 22.87%, 26.15%, and 39.04% (Trials A, B, and C, respectively), and these increases were statistically significant (p = 0.0188, p = 0.0010, p < 0.0001, respectively). The increase of DR+CD8+ T cells was significantly larger in Trial C than in Trial A (p = 0.0044) or Trial B (p = 0.0288). Total CD8+ T cells significantly increased at 2 weeks posttreatment in Trial B and C (p = 0.0013, p = 0.0004, respectively). Interestingly, only in Trial C were significant increases in activated CD4+ T cells seen at 2 weeks (p = 0.0035). Conclusions This is the first report of systemic T-cell responses after HSV-tk+GCV/VCV gene therapy under three clinical trial conditions. There was an increase in activated CD8+ T cells in the peripheral blood after vector injection, suggesting the potential for activation of components of cell-mediated immune response in all trial conditions. The addition of radiotherapy to in situ gene therapy seems to further increase the total CD8+ T cells and activated CD4+ T cells.
KW - Cytotoxic gene therapy
KW - HSV-tk/GCV gene therapy
KW - IMRT
KW - Prostate cancer
KW - Radio-gene therapy
UR - http://www.scopus.com/inward/record.url?scp=2442512179&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2442512179&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2004.01.020
DO - 10.1016/j.ijrobp.2004.01.020
M3 - Article
C2 - 15145177
AN - SCOPUS:2442512179
VL - 59
SP - 562
EP - 571
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
SN - 0360-3016
IS - 2
ER -