Electroviscous effects in microchannels

Lawrence Kulinsky, Yuchun Wang, Mauro Ferrari

Research output: Chapter in Book/Report/Conference proceedingConference contribution

26 Scopus citations

Abstract

Fluid flow in capillary microchannels is used in numerous applications in biotechnology (such as protein separation, fast DNA analysis, drug deliveries systems and viral filtration), in solid-state devices, and in catalytic devices. The current work presents the experimental validation for the electrokinetic theory in microchannels. Retardation of polar liquids, including de-ionized water, ethanol and propyl alcohol, is studied in microfabricated channels of several diameters. It was found that polar liquids flow about 6 percent more slowly than predicted by the classical hydrodynamic theory in microchannels, with the hydraulic diameter equal to 90 microns. For small microchannels with a hydraulic diameter of several microns, observed retardation is on the order of 70 percent. Collected experimental data have good correspondence with the electrokinetic model presented. Electrokinetic retardation of polar liquids in microchannels is based on the charge separation principle. Electrical charges are separated at the interface (near the channel wall). When liquid is forced downstream, it causes charge accumulation at one end of the microchannel. The streaming potential produced causes an upstream current that creates upstream counterflow. The resultant fluid flow is less than it would be for non-polar liquids. The higher the zeta-potential at the microchannel wall and the smaller the channel, the larger the resulting retardation. Modifications for the friction factor, as applied to microfluidics, are suggested. Recommendations to improve fluid flow in microchannels are made.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSociety of Photo-Optical Instrumentation Engineers
Pages158-168
Number of pages11
Volume3606
ISBN (Print)0819430765
StatePublished - Jan 1 1999
EventProceedings of the 1999 Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications II - San Jose, CA, USA
Duration: Jan 25 1999Jan 26 1999

Other

OtherProceedings of the 1999 Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications II
CitySan Jose, CA, USA
Period1/25/991/26/99

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Electroviscous effects in microchannels'. Together they form a unique fingerprint.

Cite this