Efficient gene transfer to pancreatic islets mediated by adenoviral vectors

Marie E. Csete, Pierre Y. Benhamou, Kenneth E. Drazan, Lily Wu, Diane F. McLntee, Robert Afra, Yoko Mullen, Ronald W. Busuttil, Abraham Shared

Research output: Contribution to journalArticlepeer-review

90 Scopus citations

Abstract

Genetic manipulation of pancreatic islets before transplantation has the potential to alter cellular immunity as well as islet fiinction. The purpose of this study was to examine the feasibility of gene transfer to islets, using replication-defective adenoviral vectors. Newborn mouse islets were infected with AdHCMVsplLacZ vector encoding Escherichia coli β-galactosidase (β-gal). Islets were cocultured with vector, at virus-to-target cell ratios of 10:1, for 1 hr. Gene transfer was assessed by specific histochemical stain for /3-gal (X-gal). Islet DNA and RNA were analyzed by Southern and PCR for β-gal and adeno sequences, and recombinant protein production by western and ONPG assays. Islet integrity after gene transfer was assessed by static incubations and transplantation to nondiabetic and to diabetic mice. Southern analysis and PCR confirmed the presence of E coli β-galactosidase and the E4 adeno DNA in infected islets, but not in controls. Reverse-transcription PCR and western analysis demonstrated expression and protein production of inserted E coli β-galactosidase, but not E4 message. Insulin release in response to static incubations was unimpaired in infected islets. Syngeneic islet grafts stained positively for insulin for up to 7 days. Transplanted, genetically manipulated islets functioned similarly to control islets in reversing murine drug-induced diabetes. Thus, gene transfer into islets can be accomplished using adenovirus-based vectors. The capacity of this virus to infect nondividing cells allows insertion of cDNAinto pancreatic islets, with potential application to the transplant setting.

Original languageEnglish (US)
Pages (from-to)263-268
Number of pages6
JournalTransplantation
Volume59
Issue number2
DOIs
StatePublished - Jan 1995

ASJC Scopus subject areas

  • Transplantation

Fingerprint

Dive into the research topics of 'Efficient gene transfer to pancreatic islets mediated by adenoviral vectors'. Together they form a unique fingerprint.

Cite this