Abstract
Glucocorticoid receptor (GR) immunoreactivity (IR) was analyzed semi-automatically in the forebrain and in the lower brain stem of male rats treated for two weeks with imipramine (10 μmol/kg). Serum corticosterone and aldosterone levels were determined by means of radioimmunoassay procedures. The microdensitometric analysis demonstrated a selective increase in the GR IR in the nerve cell nuclei of the locus coeruleus (A6), of the ventral part of the reticular gigantocellular nucleus (B3L) and of the nucleus raphae magnus (B3M), whereas a small reduction of GR IR was found in the nucleus raphe obscurus (B2). In the morphometric analysis significant increases in the mean profile area of nuclear GR IR, which may be secondary to the increase in GR IR, were observed in the B3M. The serum corticosterone and aldosterone levels were not found to be significantly altered. The selective changes of GR IR may reflect the presence of an altered number of GR in these nerve cell groups and/ or an altered translocation of GR to the nuclei. It is of substantial interest that these changes were observed in the presence of unchanged serum levels of corticosterone and aldosterone. It seems possible that adaptive changes in monoamine synapses induced by the chronic imipramine treatment may be responsible for the changes in GR IR found in the noradrenaline (NA) and 5-hydroxytryptamine (5-HT) cell bodies, respectively. The present results open up the possibility that chronic imipramine treatment may help to maintain the glucocorticoid receptor function in the locus coeruleus and in the 5-HT cell groups of the rostral ventromedial medulla of depressed patients.
Original language | English (US) |
---|---|
Pages (from-to) | 191-203 |
Number of pages | 13 |
Journal | Journal of Neural Transmission |
Volume | 73 |
Issue number | 3 |
DOIs | |
State | Published - Oct 1988 |
Keywords
- 5-hydroxytryptamine
- Glucocorticoid receptor
- image analysis
- imipramine
- noradrenaline
- rat brain
ASJC Scopus subject areas
- Neuroscience(all)