TY - GEN
T1 - Effects of a Smartphone-Based Wearable Telerehabilitation System for In-Home Dynamic Weight-Shifting Balance Exercises by Individuals with Parkinson's Disease
AU - An, Junmo
AU - Kim, Jiyeon
AU - Lai, Eugene C.
AU - Lee, Beom Chan
PY - 2020/7
Y1 - 2020/7
N2 - This paper describes the effects of a smartphone-based wearable telerehabilitation system (called Smarter Balance System, SBS) intended for in-home dynamic weight-shifting balance exercises (WSBEs) by individuals with Parkinson's disease (PD). Two individuals with idiopathic PD performed in-home dynamic WSBEs in anterior-posterior (A/P) and medial-lateral (M/L) directions, using the SBS 3 days per week for 6 weeks. Exercise performance was quantified by cross-correlation (XCORR) and position error (PE) analyses. Balance and gait performance and level of fear of falling were assessed by limit of stability (LOS), Sensory Organization Test (SOT), Falls Efficacy Scale (FES), Activities-specific Balance Confidence (ABC), and Dynamic Gait Index (DGI) at the pre-(beginning of week 1), post-(end of week 6), and retention-(1 month after week 6) assessments. Regression analyses found that exponential trends of the XCORR and PE described exercise performance more effectively than linear trends. Range of LOS in both A/P and M/L directions improved at the post-assessment compared to the pre-assessment, and was retained at the retention assessment. The preliminary findings emphasize the advantages of wearable balance telerehabilitation technologies when performing in-home balance rehabilitation exercises.
AB - This paper describes the effects of a smartphone-based wearable telerehabilitation system (called Smarter Balance System, SBS) intended for in-home dynamic weight-shifting balance exercises (WSBEs) by individuals with Parkinson's disease (PD). Two individuals with idiopathic PD performed in-home dynamic WSBEs in anterior-posterior (A/P) and medial-lateral (M/L) directions, using the SBS 3 days per week for 6 weeks. Exercise performance was quantified by cross-correlation (XCORR) and position error (PE) analyses. Balance and gait performance and level of fear of falling were assessed by limit of stability (LOS), Sensory Organization Test (SOT), Falls Efficacy Scale (FES), Activities-specific Balance Confidence (ABC), and Dynamic Gait Index (DGI) at the pre-(beginning of week 1), post-(end of week 6), and retention-(1 month after week 6) assessments. Regression analyses found that exponential trends of the XCORR and PE described exercise performance more effectively than linear trends. Range of LOS in both A/P and M/L directions improved at the post-assessment compared to the pre-assessment, and was retained at the retention assessment. The preliminary findings emphasize the advantages of wearable balance telerehabilitation technologies when performing in-home balance rehabilitation exercises.
UR - http://www.scopus.com/inward/record.url?scp=85091007952&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091007952&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9175967
DO - 10.1109/EMBC44109.2020.9175967
M3 - Conference contribution
AN - SCOPUS:85091007952
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 5678
EP - 5681
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -