Dynamic simulation of blood flow effects on flexible manipulators during intra-cardiac procedures on the beating heart

A. Salimi, J. Mohammadpour, K. Grigoriadis, N. V. Tsekos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

In this paper, we develop a numerical mixed flexible-rigid body model to take into account the effects of the external disturbances acting on a flexible manipulator secondary to the oscillatory transmitral blood flow in the left ventricle. The manipulator is made of a flexible rubber-like material to further extend the surgical robotic-based catheters' degrees of freedom and steer-ability in beating-heart prosthetic aortic valve implantation procedure. Along with the developed numerical model, a detailed description of the catheter's mechanical architecture and the actuation system is also provided. Necessity of employing such a model for the designed system is clearly justified using simulation studies.

Original languageEnglish (US)
Title of host publicationASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Pages487-494
Number of pages8
DOIs
StatePublished - 2011
EventASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011 - Arlington, VA, United States
Duration: Oct 31 2011Nov 2 2011

Publication series

NameASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Volume2

Other

OtherASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Country/TerritoryUnited States
CityArlington, VA
Period10/31/1111/2/11

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Dynamic simulation of blood flow effects on flexible manipulators during intra-cardiac procedures on the beating heart'. Together they form a unique fingerprint.

Cite this