Dual Adversarial Attention Mechanism for Unsupervised Domain Adaptive Medical Image Segmentation

Xu Chen, Tianshu Kuang, Hannah Deng, Steve H. Fung, Jaime Gateno, James J. Xia, Pew Thian Yap

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Domain adaptation techniques have been demonstrated to be effective in addressing label deficiency challenges in medical image segmentation. However, conventional domain adaptation based approaches often concentrate on matching global marginal distributions between different domains in a class-agnostic fashion. In this paper, we present a dual-attention domain-adaptative segmentation network (DADASeg-Net) for cross-modality medical image segmentation. The key contribution of DADASeg-Net is a novel dual adversarial attention mechanism, which regularizes the domain adaptation module with two attention maps respectively from the space and class perspectives. Specifically, the spatial attention map guides the domain adaptation module to focus on regions that are challenging to align in adaptation. The class attention map encourages the domain adaptation module to capture class-specific instead of class-agnostic knowledge for distribution alignment. DADASeg-Net shows superior performance in two challenging medical image segmentation tasks.

Original languageEnglish (US)
Pages (from-to)3445-3453
Number of pages9
JournalIEEE Transactions on Medical Imaging
Issue number11
StatePublished - Nov 1 2022


  • Attention mechanism
  • adversarial learning
  • medical image segmentation
  • unsupervised domain adaptation

ASJC Scopus subject areas

  • Software
  • Radiological and Ultrasound Technology
  • Computer Science Applications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Dual Adversarial Attention Mechanism for Unsupervised Domain Adaptive Medical Image Segmentation'. Together they form a unique fingerprint.

Cite this