Dll1-Mediated Notch Signaling Drives Tumor Cell Cross-talk with Cancer-Associated Fibroblasts to Promote Radioresistance in Breast Cancer

Ajeya Nandi, Rahul Debnath, Anupma Nayak, Tsun Ki Jerrick To, Gatha Thacker, Megan Reilly, Sanjeev Gumber, Ilias Karagounis, Ning Li, Christopher J Lengner, Malay Haldar, Alana L Welm, Andres M Blanco, Christoforos Thomas, Rumela Chakrabarti

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Resistance to radiotherapy is a major obstacle for effective cancer treatment. Both cancer-associated fibroblasts (CAF) within the tumor microenvironment (TME) and Notch signaling are implicated in radioresistance, but their potential interrelationship is unclear. Here, we report that irradiated samples obtained from luminal breast cancer patient tumors express higher levels of the Notch ligand Dll1 and have a greater number of aSMA- and FAP-expressing activated CAFs. Single cell transcriptomic profiles further revealed enrichment of an aSMA þ myofibroblastic subpopulation of CAF in Dll1 þ tumors. In murine and human patient-derived xenograft models, Dll1 þ tumor cells were more radioresistant than Dll1 tumor cells, and genetic and pharmacologic blocking of Dll1-mediated Notch signaling decreased the number of Dll1 þ cancer stem cells (CSC) and CAFs and increased Dll1 þ tumor cell radiosensitivity. Dll1 þ cells recruited CAFs in an IL6-dependent fashion and promoted Wnt ligand secretion by Notch2/3-expressing CAFs, thereby driving Wnt/b-catenin–dependent increases in Dll1 þ CSC function to promote metastasis. Treatment with the porcupine inhibitor LGK-974 that inhibits Wnt ligand secretion or pharmacologic blockade of IL6 or Dll1 suppressed CAF-dependent enhancement of Dll1 þ CSC function and metastasis in radioresistant tumors. Together, these findings reveal an essential cross-talk between Dll1 þ cancer cells and CAFs, which promotes metastasis and radioresistance, which could be therapeutically exploited to improve the outcome of patients with breast cancer.

Original languageEnglish (US)
Pages (from-to)3718-3733
Number of pages16
JournalCancer research
Issue number20
StatePublished - Oct 17 2022


  • Breast Neoplasms/pathology
  • Cancer-Associated Fibroblasts/pathology
  • Female
  • Humans
  • Intercellular Signaling Peptides and Proteins
  • Ligands
  • Receptors, Notch
  • beta Catenin

ASJC Scopus subject areas

  • Oncology
  • Cancer Research


Dive into the research topics of 'Dll1-Mediated Notch Signaling Drives Tumor Cell Cross-talk with Cancer-Associated Fibroblasts to Promote Radioresistance in Breast Cancer'. Together they form a unique fingerprint.

Cite this