Abstract
K2P6.1, a member of the 2-pore domain K channel family, is highly expressed in the vascular system; however, its function is unknown. We tested the following hypotheses. K2P6.1 regulates the following: (1) systemic blood pressure; (2) the contractile state of arteries; (3) vascular smooth muscle cell migration; (4) proliferation; and/or (5) volume regulation. Mice lacking K2P6.1 (KO) were generated by deleting exon 1 of Kcnk6. Mean arterial blood pressure in both anesthetized and awake KO mice was increased by 17±2 and 26±3 mm Hg, respectively (P<0.05). The resting membrane potential in freshly dispersed vascular smooth muscle cells was depolarized by 17±2 mV in the KO compared with wild-type littermates (P<0.05). The contractile responses to KCl (P<0.05) and BAY K 8644 (P<0.01), an activator of L-type calcium channels, were enhanced in isolated segments of aorta from KO mice. However, there was no difference in the current density of L-type calcium channels. Responses to U46619, an agent that activates rho kinase, showed an enhanced contraction in aorta from KO mice (P<0.001). The BAY K 8644-mediated increase in contraction was decreased to wild-type levels when treated with Y27632, a rho kinase inhibitor, (P<0.05). K 2P6.1 does not appear to be involved with migration, proliferation, or volume regulation in cultured vascular smooth muscle cells. We conclude that K2P6.1 deficiency induces vascular dysfunction and hypertension through a mechanism that may involve smooth muscle cell depolarization and enhanced rho kinase activity.
Original language | English (US) |
---|---|
Pages (from-to) | 672-678 |
Number of pages | 7 |
Journal | Hypertension |
Volume | 58 |
Issue number | 4 |
DOIs | |
State | Published - Oct 2011 |
Keywords
- 2-pore domain potassium channels (K)
- hypertension
- K6.1
- Kcnk6
- resting membrane potential
- Rho kinase
- TWIK-2
ASJC Scopus subject areas
- Internal Medicine