TY - JOUR
T1 - Dihydroxy bile acids activate the transcription of cyclooxygenase-2
AU - Zhang, Fan
AU - Subbaramaiah, Kotha
AU - Altorki, Nasser
AU - Dannenberg, Andrew J.
PY - 1998/1/23
Y1 - 1998/1/23
N2 - Bile acids, endogenous promoters of gastrointestinal cancer, activate protein kinase C (PKC) and the activator protein-1 (AP-1) transcription factor. Because other activators of PKC and AP-1 induce cyclooxygenase-2 (COX-2), we determined the effects of bile acids on the expression of COX-2 in human esophageal adenocarcinoma cells. Treatment with the dihydroxy bile acids chenodeoxycholate and deoxycholate resulted in an ~10-fold increase in the production of prostaglandin E2 (PGE2). Enhanced synthesis of PGE2 was associated with a marked increase in the levels of COX-2 mRNA and protein, with maximal effects at 8-12 and 12-24 h, respectively. In contrast, neither cholic acid nor conjugated bile acids affected the levels of COX-2 or the synthesis of PGE2. Nuclear run-off assays and transient transfections with a human COX-2 promoter construct showed that induction of COX-2 mRNA by chenodeoxycholate and deoxycholate was due to increased transcription. Bile acid-mediated induction of COX-2 was blocked by inhibitors of PKC activity, including calphostin C and staurosporine. Treatment with bile acid enhanced the phosphorylation of c-Jun and increased binding of AP-1 to DNA. These data are important because dihydroxy bile acid-mediated induction of COX-2 may explain, at least in part, the tumor-promoting effects of bile acids.
AB - Bile acids, endogenous promoters of gastrointestinal cancer, activate protein kinase C (PKC) and the activator protein-1 (AP-1) transcription factor. Because other activators of PKC and AP-1 induce cyclooxygenase-2 (COX-2), we determined the effects of bile acids on the expression of COX-2 in human esophageal adenocarcinoma cells. Treatment with the dihydroxy bile acids chenodeoxycholate and deoxycholate resulted in an ~10-fold increase in the production of prostaglandin E2 (PGE2). Enhanced synthesis of PGE2 was associated with a marked increase in the levels of COX-2 mRNA and protein, with maximal effects at 8-12 and 12-24 h, respectively. In contrast, neither cholic acid nor conjugated bile acids affected the levels of COX-2 or the synthesis of PGE2. Nuclear run-off assays and transient transfections with a human COX-2 promoter construct showed that induction of COX-2 mRNA by chenodeoxycholate and deoxycholate was due to increased transcription. Bile acid-mediated induction of COX-2 was blocked by inhibitors of PKC activity, including calphostin C and staurosporine. Treatment with bile acid enhanced the phosphorylation of c-Jun and increased binding of AP-1 to DNA. These data are important because dihydroxy bile acid-mediated induction of COX-2 may explain, at least in part, the tumor-promoting effects of bile acids.
UR - http://www.scopus.com/inward/record.url?scp=0031915460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031915460&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.4.2424
DO - 10.1074/jbc.273.4.2424
M3 - Article
C2 - 9442092
AN - SCOPUS:0031915460
SN - 0021-9258
VL - 273
SP - 2424
EP - 2428
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 4
ER -