TY - JOUR
T1 - Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer
AU - Yu, Wen
AU - Tang, Chad
AU - Hobbs, Brian P.
AU - Li, Xiao
AU - Koay, Eugene J.
AU - Wistuba, Ignacio I.
AU - Sepesi, Boris
AU - Behrens, Carmen
AU - Rodriguez Canales, Jaime
AU - Parra Cuentas, Edwin Roger
AU - Erasmus, Jeremy J.
AU - Court, Laurence E.
AU - Chang, Joe Y.
N1 - Funding Information:
The present study was supported in part by Cancer Center Support (Core) grant CA016672 from the National Cancer Institute to The University of Texas MD Anderson Cancer Center.
Funding Information:
W.Y. was supported by the National Natural Science Foundation of China (grant 81502645 ) and Western Medicine Guiding Program funded by the Science and Technology Commission of Shanghai Municipality (grant 14411968800).
Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2018/11/15
Y1 - 2018/11/15
N2 - Purpose: To develop and validate a radiomics signature that can predict the clinical outcomes for patients with stage I non-small cell lung cancer (NSCLC). Methods and Materials: We retrospectively analyzed contrast-enhanced computed tomography images of patients from a training cohort (n = 147) treated with surgery and an independent validation cohort (n = 295) treated with stereotactic ablative radiation therapy. Twelve radiomics features with established strategies for filtering and preprocessing were extracted. The random survival forests (RSF) method was used to build models from subsets of the 12 candidate features based on their survival relevance and generate a mortality risk index for each observation in the training set. An optimal model was selected, and its ability to predict clinical outcomes was evaluated in the validation set using predicted mortality risk indexes. Results: The optimal RSF model, consisting of 2 predictive features, kurtosis and the gray level co-occurrence matrix feature homogeneity2, allowed for significant risk stratification (log-rank P <.0001) and remained an independent predictor of overall survival after adjusting for age, tumor volume and histologic type, and Karnofsky performance status (hazard ratio [HR] 1.27; P < 2e-16) in the training set. The resultant mortality risk indexes were significantly associated with overall survival in the validation set (log-rank P =.0173; HR 1.02, P =.0438). They were also significant for distant metastasis (log-rank P <.05; HR 1.04, P =.0407) and were borderline significant for regional recurrence on univariate analysis (log-rank P <.05; HR 1.04, P =.0617). Conclusions: Our radiomics model accurately predicted several clinical outcomes and allowed pretreatment risk stratification in stage I NSCLC, allowing the choice of treatment to be tailored to each patient's individual risk profile.
AB - Purpose: To develop and validate a radiomics signature that can predict the clinical outcomes for patients with stage I non-small cell lung cancer (NSCLC). Methods and Materials: We retrospectively analyzed contrast-enhanced computed tomography images of patients from a training cohort (n = 147) treated with surgery and an independent validation cohort (n = 295) treated with stereotactic ablative radiation therapy. Twelve radiomics features with established strategies for filtering and preprocessing were extracted. The random survival forests (RSF) method was used to build models from subsets of the 12 candidate features based on their survival relevance and generate a mortality risk index for each observation in the training set. An optimal model was selected, and its ability to predict clinical outcomes was evaluated in the validation set using predicted mortality risk indexes. Results: The optimal RSF model, consisting of 2 predictive features, kurtosis and the gray level co-occurrence matrix feature homogeneity2, allowed for significant risk stratification (log-rank P <.0001) and remained an independent predictor of overall survival after adjusting for age, tumor volume and histologic type, and Karnofsky performance status (hazard ratio [HR] 1.27; P < 2e-16) in the training set. The resultant mortality risk indexes were significantly associated with overall survival in the validation set (log-rank P =.0173; HR 1.02, P =.0438). They were also significant for distant metastasis (log-rank P <.05; HR 1.04, P =.0407) and were borderline significant for regional recurrence on univariate analysis (log-rank P <.05; HR 1.04, P =.0617). Conclusions: Our radiomics model accurately predicted several clinical outcomes and allowed pretreatment risk stratification in stage I NSCLC, allowing the choice of treatment to be tailored to each patient's individual risk profile.
UR - http://www.scopus.com/inward/record.url?scp=85037721087&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037721087&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2017.10.046
DO - 10.1016/j.ijrobp.2017.10.046
M3 - Article
C2 - 29246722
AN - SCOPUS:85037721087
SN - 0360-3016
VL - 102
SP - 1090
EP - 1097
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 4
ER -