Design, development, and temporal evaluation of a magnetic resonance imaging-compatible in vitro circulation model using a compliant abdominal aortic aneurysm phantom

Mirunalini Thirugnanasambandam, Tejas Canchi, Senol Piskin, Christof Karmonik, Ethan Kung, Prahlad G. Menon, Stephane Avril, Ender A. Finol

Research output: Contribution to journalArticlepeer-review

Abstract

Biomechanical characterization of abdominal aortic aneurysms (AAAs) has become commonplace in rupture risk assessment studies. However, its translation to the clinic has been greatly limited due to the complexity associated with its tools and their implementation. The unattainability of patient-specific tissue properties leads to the use of generalized population-averaged material models in finite element analyses, which adds a degree of uncertainty to the wall mechanics quantification. In addition, computational fluid dynamics modeling of AAA typically lacks the patient-specific inflow and outflow boundary conditions that should be obtained by nonstandard of care clinical imaging. An alternative approach for analyzing AAA flow and sac volume changes is to conduct in vitro experiments in a controlled laboratory environment. In this study, we designed, built, and characterized quantitatively a benchtop flow loop using a deformable AAA silicone phantom representative of a patient-specific geometry. The impedance modules, which are essential components of the flow loop, were fine-tuned to ensure typical intraluminal pressure conditions within the AAA sac. The phantom was imaged with a magnetic resonance imaging (MRI) scanner to acquire time-resolved images of the moving wall and the velocity field inside the sac. Temporal AAA sac volume changes lead to a corresponding variation in compliance throughout the cardiac cycle. The primary outcome of this work was the design optimization of the impedance elements, the quantitative characterization of the resistive and capacitive attributes of a compliant AAA phantom, and the exemplary use of MRI for flow visualization and quantification of the deformed AAA geometry.

Original languageEnglish (US)
Article number051004
JournalJournal of Biomechanical Engineering
Volume143
Issue number5
DOIs
StatePublished - May 2021

Keywords

  • Aneurysm
  • Biomechanics
  • Magnetic resonance
  • Optimization
  • Windkessel

ASJC Scopus subject areas

  • Biomedical Engineering
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Design, development, and temporal evaluation of a magnetic resonance imaging-compatible in vitro circulation model using a compliant abdominal aortic aneurysm phantom'. Together they form a unique fingerprint.

Cite this