DeepCodec: Adaptive sensing and recovery via deep convolutional neural networks

Ali Mousavi, Gautam Dasarathy, Richard G. Baraniuk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

42 Scopus citations

Abstract

We develop a novel computational sensing framework for sensing and recovering structured signals. When trained on a set of representative signals, our framework learns to take undersampled measurements and recover signals from these measurements using a deep convolutional neural network. In other words, it learns a transformation from the original signals to a near-optimal number of undersampled measurements and the inverse transformation from measurements to signals. This is in contrast to conventional compressive sensing (CS) systems that use random linear measurements and convex optimization or iterative algorithms for signal recovery.

Original languageEnglish (US)
Title of host publication55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages744
Number of pages1
ISBN (Electronic)9781538632666
DOIs
StatePublished - Jul 1 2017
Event55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017 - Monticello, United States
Duration: Oct 3 2017Oct 6 2017

Publication series

Name55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017
Volume2018-January

Other

Other55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017
Country/TerritoryUnited States
CityMonticello
Period10/3/1710/6/17

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Energy Engineering and Power Technology
  • Control and Optimization

Fingerprint

Dive into the research topics of 'DeepCodec: Adaptive sensing and recovery via deep convolutional neural networks'. Together they form a unique fingerprint.

Cite this