Dealbreaker: A nonlinear latent variable model for educational data

Andrew Lan, Tom Goldstein, Richard Baraniuk, Christoph Studer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Statistical models of student responses on assessment questions, such as those in homeworks and exams, enable educators and computer-based personalized learning systems to gain insights into students' knowledge using machine learning. Popular student-response models, including the Rasch model and item response theory models, represent the probability of a student answering a question correctly using an affine function of latent factors. While such models can accurately predict student responses, their ability to interpret the underlying knowledge structure (which is certainly nonlinear) is limited. In response, we develop a new, nonlinear latent variable model that we call the dealbreaker model, in which a student's success probability is determined by their weakest concept mastery. We develop efficient parameter inference algorithms for this model using novel methods for nonconvex optimization. We show that the dealbreaker model achieves comparable or better prediction performance as compared to affine models with real-world educational datasets. We further demonstrate that the parameters learned by the dealbreaker model are interpretable-they provide key insights into which concepts are critical (i.e., the "dealbreaker") to answering a question correctly. We conclude by reporting preliminary results for a movie-rating dataset, which illustrate the broader applicability of the dealbreaker model.

Original languageEnglish (US)
Title of host publication33rd International Conference on Machine Learning, ICML 2016
EditorsMaria Florina Balcan, Kilian Q. Weinberger
PublisherInternational Machine Learning Society (IMLS)
Pages438-447
Number of pages10
ISBN (Electronic)9781510829008
StatePublished - 2016
Event33rd International Conference on Machine Learning, ICML 2016 - New York City, United States
Duration: Jun 19 2016Jun 24 2016

Publication series

Name33rd International Conference on Machine Learning, ICML 2016
Volume1

Other

Other33rd International Conference on Machine Learning, ICML 2016
Country/TerritoryUnited States
CityNew York City
Period6/19/166/24/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Dealbreaker: A nonlinear latent variable model for educational data'. Together they form a unique fingerprint.

Cite this