Daytime Data and LSTM can Forecast Tomorrow's Stress, Health, and Happiness

Terumi Umematsu, Akane Sano, Rosalind W. Picard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

Accurately forecasting well-being may enable people to make desirable behavioral changes that could improve their future well-being. In this paper, we evaluate how well an automated model can forecast the next-day's well-being (specifically focusing on stress, health, and happiness) from static models (support vector machine and logistic regression) and time-series models (long short-term memory neural network models (LSTM)) using the previous seven days of physiological, mobile phone, and behavioral survey data. We especially examine how using only a portion of the day's data (e.g. just night-time, or just daytime) influences the forecasting accuracy. The results show that accuracy is improved, across every condition tested, by using an LSTM instead of using static models. We find that daytime-only physiology data from wearable sensors, using an LSTM, can provide an accurate forecast of tomorrow's well-being using students' daily life data (stress: 80.4%, health: 86.0%, and happiness: 79.1%), achieving the same accuracy as using data collected from around the clock. These findings are valuable steps toward developing a practical and convenient well-being forecasting system.

Original languageEnglish (US)
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2186-2190
Number of pages5
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: Jul 23 2019Jul 27 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period7/23/197/27/19

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Daytime Data and LSTM can Forecast Tomorrow's Stress, Health, and Happiness'. Together they form a unique fingerprint.

Cite this