Abstract
Purpose: To quantify the relative importance of brain regions responsible for reduced functional connectivity (FC) in their Voiding Initiation Network in female multiple sclerosis (MS) patients with neurogenic lower urinary tract dysfunction (NLUTD) and voiding dysfunction (VD). A data-driven machine-learning approach is utilized for quantification. Methods: Twenty-seven ambulatory female patients with MS and NLUTD (group 1: voiders, n = 15 and group 2: VD, n = 12) participated in a functional magnetic resonance imaging (fMRI) voiding study. Brain activity was recorded by fMRI with simultaneous urodynamic testing. The Voiding Initiation Network was identified from averaged fMRI activation maps. Four machine-learning algorithms were employed to optimize the area under curve (AUC) of the receiver-operating characteristic curve. The optimal model was used to identify the relative importance of relevant brain regions. Results: The Voiding Initiation Network exhibited stronger FC for voiders in frontal regions and stronger disassociation in cerebellar regions. Highest AUC values were obtained with 'random forests' (0.86) and 'partial least squares' algorithms (0.89). While brain regions with highest relative importance (> 75%) included superior, middle, inferior frontal and cingulate regions, relative importance was larger than 60% for 186 of the 227 brain regions of the Voiding Initiation Network, indicating a global effect. Conclusions: Voiders and VD patients showed distinctly different FC in their Voiding Initiation Network. Machine-learning is able to identify brain centers contributing to these observed differences. Knowledge of these centers and their connectivity may allow phenotyping patients to centrally focused treatments such as cortical modulation.
Original language | English (US) |
---|---|
Pages (from-to) | 195-204 |
Number of pages | 10 |
Journal | International Neurourology Journal |
Volume | 23 |
Issue number | 3 |
DOIs | |
State | Published - 2019 |
Keywords
- Functional magnetic resonance imaging
- Machine learning
- Multiple sclerosis
- Neurogenic lower urinary tract dysfunction
ASJC Scopus subject areas
- Neurology
- Clinical Neurology
- Urology