TY - JOUR
T1 - Cyclooxygenase-2-derived prostaglandin E2 stimulates Id-1 transcription
AU - Subbaramaiah, Kotha
AU - Benezra, Robert
AU - Hudis, Clifford
AU - Dannenberg, Andrew J.
PY - 2008/12/5
Y1 - 2008/12/5
N2 - Cyclooxygenase-2 (COX-2) and Id-1 are overexpressed in a variety of human malignancies. Recently, each of these genes was found to play a role in mediating breast cancer metastasis to the lungs, but their potential interdependence was not evaluated. Hence, the main objective of the current study was to determine whether COX-2-derived prostaglandin (PGE2) activated Id-1 transcription, leading in turn to increased invasiveness of mammary epithelial cells. In MDA-MB-231 cells, treatment with PGE2 induced Id-1, an effect that was mimicked by an EP4 agonist. PGE 2 via EP4 activated the epidermal growth factor receptor (EGFR) → ERK1/2 pathway, which led to increased expression of Egr-1. PGE2 stimulated EGFR signaling by inducing the release of amphiregulin, an EGFR ligand. The ability of PGE2 to activate Id-1 transcription was mediated by enhanced binding of Egr-1 to the Id-1 promoter. Silencing of COX-2 or pharmacological inhibition of COX-2 led to reduced PGE2 production, decreased Id-1 expression, and reduced migration of cells through extracellular matrix. A similar decrease in cell migration was found when Id-1 was silenced. The interrelationship between COX-2, PGE 2, Id-1, and cell invasiveness was also compared in nontumorigenic SCp2 and tumorigenic SCg6 mammary epithelial cells. Consistent with the findings in MDA-MB-231 cells, COX-2-derived PGE2 induced Id-1, leading in turn to increased cell invasiveness. Taken together, these results suggest that PGE2 via EP4 activated the EGFR→ ERK1/2 → Egr-1 pathway, leading to increased Id-1 transcription and cell invasion. These findings provide new insights into the relationship between COX-2 and Id-1 and their potential role in metastasis.
AB - Cyclooxygenase-2 (COX-2) and Id-1 are overexpressed in a variety of human malignancies. Recently, each of these genes was found to play a role in mediating breast cancer metastasis to the lungs, but their potential interdependence was not evaluated. Hence, the main objective of the current study was to determine whether COX-2-derived prostaglandin (PGE2) activated Id-1 transcription, leading in turn to increased invasiveness of mammary epithelial cells. In MDA-MB-231 cells, treatment with PGE2 induced Id-1, an effect that was mimicked by an EP4 agonist. PGE 2 via EP4 activated the epidermal growth factor receptor (EGFR) → ERK1/2 pathway, which led to increased expression of Egr-1. PGE2 stimulated EGFR signaling by inducing the release of amphiregulin, an EGFR ligand. The ability of PGE2 to activate Id-1 transcription was mediated by enhanced binding of Egr-1 to the Id-1 promoter. Silencing of COX-2 or pharmacological inhibition of COX-2 led to reduced PGE2 production, decreased Id-1 expression, and reduced migration of cells through extracellular matrix. A similar decrease in cell migration was found when Id-1 was silenced. The interrelationship between COX-2, PGE 2, Id-1, and cell invasiveness was also compared in nontumorigenic SCp2 and tumorigenic SCg6 mammary epithelial cells. Consistent with the findings in MDA-MB-231 cells, COX-2-derived PGE2 induced Id-1, leading in turn to increased cell invasiveness. Taken together, these results suggest that PGE2 via EP4 activated the EGFR→ ERK1/2 → Egr-1 pathway, leading to increased Id-1 transcription and cell invasion. These findings provide new insights into the relationship between COX-2 and Id-1 and their potential role in metastasis.
UR - http://www.scopus.com/inward/record.url?scp=57749116305&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57749116305&partnerID=8YFLogxK
U2 - 10.1074/jbc.M805490200
DO - 10.1074/jbc.M805490200
M3 - Article
C2 - 18842581
AN - SCOPUS:57749116305
SN - 0021-9258
VL - 283
SP - 33955
EP - 33968
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 49
ER -