Curve clustering with spatial constraints for analysis of spatiotemporal data

K. Blekas, C. Nikou, N. Galatsanos, N. V. Tsekos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

In this paper we present a new approach for curve clustering designed for analysis of spatiotemporal data. Such kind of data contains both spatial and temporal patterns that we desire to capture. The proposed methodology is based on regression and Gaussian mixture modeling and the novelty of the herein work is the incorporation of spatial smoothness constraints in the form of a prior for the data labels. This enables the proposed model to take into account the underlying property of spatiotemporal data that spatially adjacent data points most likely should belong to the same cluster. A maximum a posteriori Expectation Maximization (MAP-EM) algorithm is used for learning this model. We present numerical experiments with simulated data where the ground truth is known in order to assess the value of the introduced smoothness constraint, and also with real cardiac perfusion MRI data. The results are very promising and demonstrate the value of the proposed constraint for analysis of such data.

Original languageEnglish (US)
Title of host publicationProceedings 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007
Pages529-535
Number of pages7
DOIs
StatePublished - 2007
Event19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007 - Patras, Greece
Duration: Oct 29 2007Oct 31 2007

Publication series

NameProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
Volume1
ISSN (Print)1082-3409

Conference

Conference19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007
Country/TerritoryGreece
CityPatras
Period10/29/0710/31/07

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Curve clustering with spatial constraints for analysis of spatiotemporal data'. Together they form a unique fingerprint.

Cite this