Cultured muscle from myotonic muscular dystrophy patients: Altered membrane electrical properties

M. Merickel, R. Gray, P. Chauvin, S. Appel

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Myotonic muscular dystrophy (MyD) is an inherited human disease involving skeletal muscle as well as many other organ systems. We have approached the study of this disorder by growing normal and diseased human muscle in a primary tissue culture system and investigating some of the electrical properties of the resulting myotubes. The most distinctive abnormality noted in MyD myotubes was an increased tendency to fire repetitive action potentials. A decreased action potential afterhyperpolarization amplitude and the presence of depolarizing afterpotentials were also noted, as were a decreased resting membrane potential, decreased action potential amplitude and overshoot, and decreased outward-going rectification. Although the ionic basis of these abnormal properties in vitro is not clearly defined, changes in the slow outward-going potassium current offer the best explanation. Furthermore, MyD cell culture offers a valuable model for critical analysis of the molecular mechanisms underlying MyD deficits.

Original languageEnglish (US)
Pages (from-to)648-652
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume78
Issue number1 II
DOIs
StatePublished - 1981

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Cultured muscle from myotonic muscular dystrophy patients: Altered membrane electrical properties'. Together they form a unique fingerprint.

Cite this