Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: Synergistic action of estrogen metabolite and ligands of death receptor family

Aruna Basu, Valerie P. Castle, Mohammed Bouziane, Kapil Bhalla, Subrata Haldar

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

2-Methoxyestradiol is a physiologic metabolite of 17β-estradiol. This orally active compound can inhibit tumor growth or metastasis in tumor models without inducing any clinical sign of toxicity. Our previous studies indicated that 2-methoxyestradiol-mediated apoptosis involves the disappearance of intact 21-kDa Bid protein, cytochrome c release, and predominant procaspase-3 cleavage. Here, using MIA PaCa-2 cells as a model, we investigated whether this estrogen metabolite induces apoptosis by converging two major pathways: the death receptor-mediated extrinsic and the mitochondrial intrinsic pathway. Exogenous expression of dominant-negative caspase-8 or dominant-negative FADD reverts the effect of 2-methoxyestradiol-mediated cell death. In parallel with this observation, Z-IETD-FMK, a cell permeable irreversible inhibitor of caspase-8, can render significant protection against 2-methoxyestradiol-induced apoptosis. RNase protection assay and cell surface receptor analysis by flow cytometry show the up-regulation of members of death receptor family in 2-methoxyestradiol-exposed pancreatic cancer cells. Our mechanistic studies also implicate that oxidative stress precedes 2-methoxyestradiol-mediated c-Jun NH2-terminal kinase activation, leading to elevated Fas level. Because 2-methoxyestradiol is able to trigger death receptor signaling, we were interested in examining the effects of 2-methoxyestradiol and Fas ligand (FasL)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) together on pancreatic cancer cell death. Interestingly, the endogenous angiogenesis inhibitor 2-methoxyestradiol augments FasL/THAIL-induced apoptosis in these cells. Moreover, the combination of 2-methoxyestradiol and TRAIL reduces the tumor burden in vivo in MIA PaCa-2 tumor xenograft model by caspase-3 activation.

Original languageEnglish (US)
Pages (from-to)4309-4318
Number of pages10
JournalCancer research
Volume66
Issue number8
DOIs
StatePublished - Apr 15 2006

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: Synergistic action of estrogen metabolite and ligands of death receptor family'. Together they form a unique fingerprint.

Cite this