Abstract
Interleukin-5 (IL-5) specifically induces the differentiation of eosinophils, which are important in host defence and the pathogenesis of allergies and asthma. Structurally, IL-5 is a unique member of the short-chain helical-bundle subfamily of cytokines whose canonical motif contains four helices (A-D) arranged in an up-up-down-down topology. In contrast to other subfamily members, which fold unimolecularly into a single helical bundle, IL-5 forms a pair of helical bundles by the interdigitation of two identical monomers that contribute a D helix to the other's A-C helices. We predicted that the lack of bioactivity by an IL-5 monomer was due to a short loop between helices C and D which physically prevents unimolecular folding of helix D into a functionally obligate structural motif. Here we report that, by lengthening this loop, we have engineered an insertional mutant of IL-5 that was expressed as a monomer with biological activity similar to that of native IL-5. These studies demonstrate that all of the structural features necessary for IL-5 to function are contained within a single helical bundle.
Original language | English (US) |
---|---|
Pages (from-to) | 652-655 |
Number of pages | 4 |
Journal | Nature |
Volume | 379 |
Issue number | 6566 |
DOIs | |
State | Published - Feb 15 1996 |
ASJC Scopus subject areas
- General