TY - JOUR
T1 - Cotreatment with vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells
AU - Fiskus, Warren
AU - Pranpat, Michael
AU - Balasis, Maria
AU - Bali, Purva
AU - Estrella, Veronica
AU - Kumaraswamy, Sandhya
AU - Rao, Rekha
AU - Rocha, Kathy
AU - Herger, Bryan
AU - Lee, Francis
AU - Richon, Victoria
AU - Bhalla, Kapil
PY - 2006/10/1
Y1 - 2006/10/1
N2 - Purpose: We determined the effects of vorinostat [suberoylanilide hydroxamic acid (SAHA)] and/or dasatinib, a dual Abl/Src kinase (tyrosine kinase) inhibitor, on the cultured human (K562 and LAMA-84) or primary chronic myelogenous leukemia (CML) cells, as well as on the murine pro-B BaF3 cells with ectopic expression of the unmutated and kinase domain-mutant forms of Bcr-Abl. Experimental Design: Following exposure to dasatinib and/or vorinostat, apoptosis, loss of clonogenic survival, as well as the activity and levels of Bcr-Abl and its downstream signaling proteins were determined. Results: Treatment with dasatinib attenuated the levels of autophosphorylated Bcr-Abl, p-CrkL, phospho-signal transducer and activator of transcription 5 (p-STAT5), p-c-Src, and p-Lyn; inhibited the activity of Lyn and c-Src; and induced apoptosis of the cultured CML cells. Combined treatment of cultured human CML and BaF3 cells with vorinostat and dasatinib induced more apoptosis than either agent alone, as well as synergistically induced loss of clonogenic survival, which was associated with greater depletion of Bcr-Abl, p-CrkL, and p-STAT5 levels. Cotreatment with dasatinib and vorinostat also attenuated the levels of Bcr-AblE255K and Bcr-AblT315I and induced apoptosis of BaFS cells with ectopic expression of the mutant forms of Bcr-Abl. Finally, cotreatment of the primary CML cells with vorinostat and dasatinib induced more loss of cell viability and depleted Bcr-Abl or Bcr-AblT315I, p-STAT5, and p-CrkL levels than either agent alone. Conclusions: As shown here, the preclinical in vitro activity of vorinostat and dasatinib against cultured and primary CML cells supports the in vivo testing of the combination in imatinib mesylate - sensitive and imatinib mesylate - resistant CML cells.
AB - Purpose: We determined the effects of vorinostat [suberoylanilide hydroxamic acid (SAHA)] and/or dasatinib, a dual Abl/Src kinase (tyrosine kinase) inhibitor, on the cultured human (K562 and LAMA-84) or primary chronic myelogenous leukemia (CML) cells, as well as on the murine pro-B BaF3 cells with ectopic expression of the unmutated and kinase domain-mutant forms of Bcr-Abl. Experimental Design: Following exposure to dasatinib and/or vorinostat, apoptosis, loss of clonogenic survival, as well as the activity and levels of Bcr-Abl and its downstream signaling proteins were determined. Results: Treatment with dasatinib attenuated the levels of autophosphorylated Bcr-Abl, p-CrkL, phospho-signal transducer and activator of transcription 5 (p-STAT5), p-c-Src, and p-Lyn; inhibited the activity of Lyn and c-Src; and induced apoptosis of the cultured CML cells. Combined treatment of cultured human CML and BaF3 cells with vorinostat and dasatinib induced more apoptosis than either agent alone, as well as synergistically induced loss of clonogenic survival, which was associated with greater depletion of Bcr-Abl, p-CrkL, and p-STAT5 levels. Cotreatment with dasatinib and vorinostat also attenuated the levels of Bcr-AblE255K and Bcr-AblT315I and induced apoptosis of BaFS cells with ectopic expression of the mutant forms of Bcr-Abl. Finally, cotreatment of the primary CML cells with vorinostat and dasatinib induced more loss of cell viability and depleted Bcr-Abl or Bcr-AblT315I, p-STAT5, and p-CrkL levels than either agent alone. Conclusions: As shown here, the preclinical in vitro activity of vorinostat and dasatinib against cultured and primary CML cells supports the in vivo testing of the combination in imatinib mesylate - sensitive and imatinib mesylate - resistant CML cells.
UR - http://www.scopus.com/inward/record.url?scp=33750303818&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750303818&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-06-0980
DO - 10.1158/1078-0432.CCR-06-0980
M3 - Article
C2 - 17020995
AN - SCOPUS:33750303818
SN - 1078-0432
VL - 12
SP - 5869
EP - 5878
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 19
ER -