Conservation of Ebp-type pilus genes among enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets

Sreedhar R. Nallapareddy, Jouko Sillanpää, Jennifer Mitchel, Kavindra V. Singh, Shahreen A. Chowdhury, George M. Weinstock, Paul M. Sullam, Barbara E. Murray

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Ebp are endocarditis-and biofilm-associated pili of Enterococcus faecalis that are also important in experimental urinary tract infections (UTIs). Our analyses, using available genomes, found that the ebp locus is unique to enterococci. In E. faecalis, the ebp locus is very highly conserved and only 1/473 E. faecalis isolates tested lacked ebpABC, while only 1.2% had the bee pilus locus. No other pilus-encoding operon was identified in 55 available genomes, indicating that the vast majority of E. faecalis strains (unlike Enterococcus faecium and streptococci) have a single pilus locus. Surface expression studies showed that Ebp pili were produced in vitro by 91/91 brain heart infusion (BHI) plus serum-grown E. faecalis isolates and that strain OG1RF expressed pili at even higher levels in rat endocarditis vegetations. However, Ebp expression was restricted to 30 to 72% of E. faecalis cells, consistent with a bistability mode of expression. We also evaluated E. faecalis interactions with human platelets and found that growth of E. faecalis in BHI plus serum significantly enhanced adherence to human platelets and that sortase deletion mutants (the ΔsrtA, Δbps, and ΔbpsΔsrtA mutants) were markedly defective. Further studies identified that Ebp pili, but not the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) Ace and Fss2, mediate adherence of E. faecalis to platelets. Taken together, our data show that the immunogenic (in human endocarditis patients) and commonly expressed Ebp pili, which are known to be important for experimental endocarditis, are highly conserved and mediate adherence to platelets, suggesting that Ebp pili may be a reasonable immunotherapeutic target for prevention or possibly treatment of endocarditis caused by this species.

Original languageEnglish (US)
Pages (from-to)2911-2920
Number of pages10
JournalInfection and Immunity
Volume79
Issue number7
DOIs
StatePublished - Jul 2011

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Conservation of Ebp-type pilus genes among enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets'. Together they form a unique fingerprint.

Cite this