Compressive video sensing: Algorithms, architectures, and applications

Richard G. Baraniuk, Thomas Goldstein, Aswin C. Sankaranarayanan, Christoph Studer, Ashok Veeraraghavan, Michael B. Wakin

Research output: Contribution to journalArticlepeer-review

96 Scopus citations

Abstract

The design of conventional sensors is based primarily on the Shannon-Nyquist sampling theorem, which states that a signal of bandwidth W Hz is fully determined by its discrete time samples provided the sampling rate exceeds 2 W samples per second. For discrete time signals, the Shannon-Nyquist theorem has a very simple interpretation: The number of data samples must be at least as large as the dimensionality of the signal being sampled and recovered. This important result enables signal processing in the discrete time domain without any loss of information. However, in an increasing number of applications, the Shannon-Nyquist sampling theorem dictates an unnecessary and often prohibitively high sampling rate (see “What Is the Nyquist Rate of a Video Signal-”). As a motivating example, the high resolution of the image sensor hardware in modern cameras reflects the large amount of data sensed to capture an image. A 10-megapixel camera, in effect, takes 10 million measurements of the scene. Yet, almost immediately after acquisition, redundancies in the image are exploited to compress the acquired data significantly, often at compression ratios of 100:1 for visualization and even higher for detection and classification tasks. This example suggests immense wastage in the overall design of conventional cameras.

Original languageEnglish (US)
Article number7814395
Pages (from-to)52-66
Number of pages15
JournalIEEE Signal Processing Magazine
Volume34
Issue number1
DOIs
StatePublished - Jan 2017

ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Compressive video sensing: Algorithms, architectures, and applications'. Together they form a unique fingerprint.

Cite this