Comparison of the irritation potentials of Boswellia serrata gum resin and of acetyl-11-keto-β-boswellic acid by in vitro cytotoxicity tests on human skin-derived cell lines

Bruno Burlando, Alessandro Parodi, Andrea Volante, Anna Maria Bassi

Research output: Contribution to journalArticle

35 Scopus citations

Abstract

Indian frankincense is a gum resin from Boswellia serrata of Burseraceae used in Ayurveda and Western medicine for the antinflammatory effects of boswellic acids, particularly 3-O-acetyl-11-keto-β-boswellic acid (AKBA). We evaluated in vitro cytotoxicities of B. serrata extract and AKBA on differentiated and undifferentiated keratinocytes (HaCaT and NCTC 2544), and foetal dermal fibroblasts (HFFF2), using neutral red uptake (NRU), MTT, and DNA assays. Comparison between NRU and MTT, and between the extract and AKBA, suggested a relatively higher toxicity of both substances on lysosomes respect to mitochondria. Extract cytotoxicity on lysosomes was higher in NCTC and HFFF2 than on the more differentiated HaCaT. DNA assay showed low extract inhibition on HFFF2 proliferation, possibly due to lower growth rate, and a stronger effect on NCTC than on HaCaT, possibly related to higher proapoptotic effect on the less differentiated NCTC, as also suggested by higher AKBA toxicity on NCTC than on HaCaT. In general, gum resin and AKBA toxicities were slightly lower or higher than that of the reference compound SDS. Our in vitro model allowed to compare the sensitivities of different human skin cells to B. serrata, and indicated that the gum resin and AKBA exert moderate to low toxicity on the skin.

Original languageEnglish (US)
Pages (from-to)144-149
Number of pages6
JournalToxicology Letters
Volume177
Issue number2
DOIs
StatePublished - Mar 15 2008

Keywords

  • Boswellic acids
  • Human skin-derived cells
  • In vitro cytotoxicity
  • Indian frankincense

ASJC Scopus subject areas

  • Toxicology

Fingerprint Dive into the research topics of 'Comparison of the irritation potentials of Boswellia serrata gum resin and of acetyl-11-keto-β-boswellic acid by in vitro cytotoxicity tests on human skin-derived cell lines'. Together they form a unique fingerprint.

Cite this