TY - JOUR
T1 - Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis
AU - Valdivia, Hugo O.
AU - Reis-Cunha, João L.
AU - Rodrigues-Luiz, Gabriela F.
AU - Baptista, Rodrigo P.
AU - Baldeviano, G. Christian
AU - Gerbasi, Robert V.
AU - Dobson, Deborah E.
AU - Pratlong, Francine
AU - Bastien, Patrick
AU - Lescano, Andrés G.
AU - Beverley, Stephen M.
AU - Bartholomeu, Daniella C.
N1 - Funding Information:
We thank Nick Dickens for his help with FPKM copy number calculations and the Genome Technology Access Center in the department of Genetics at Washington University School of Medicine for their support with next-generation sequencing. The Center is partially supported by NCI Cancer Center Support Grant #P30 CA91842 to the Siteman Cancer Center and by ICTS/CTSA Grant #UL1 TR000448 from the National Center for Research Resources (NCRR). Daniella C. Bartholomeu research was supported by Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), Instituto Nacional de Ciência e Tecnologia de Vacinas (INCTV)—Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). DCB is a CNPq research fellow. HOV, JLRC, GFRL received scholarships from CAPES and RPB received a scholarship from CNPq. Stephen Beverley and Deborah Dobson research was supported by NIH grants R01-AI29646 and R56-AI099364. Francine Pratlong and Patrick Bastien research was funded by the Institut de Veille Sanitaire, France.
Publisher Copyright:
© 2015 Valdivia et al.
PY - 2015/9/18
Y1 - 2015/9/18
N2 - Background: The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.) peruviana and L. (V.) braziliensis. However, the genetic basis of these differences is not well understood and the status of L. (V.) peruviana as distinct species has been questioned by some. Here we sequenced the genomes of two L. (V.) peruviana isolates (LEM1537 and PAB-4377) using Illumina high throughput sequencing and performed comparative analyses against the L. (V.) braziliensis M2904 reference genome. Comparisons were focused on the detection of Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs), aneuploidy and gene copy number variations. Results: We found 94,070 variants shared by both L. (V.) peruviana isolates (144,079 in PAB-4377 and 136,946 in LEM1537) against the L. (V.) braziliensis M2904 reference genome while only 26,853 variants separated both L. (V.) peruviana genomes. Analysis in coding sequences detected 26,750 SNPs and 1,513 indels shared by both L. (V.) peruviana isolates against L. (V.) braziliensis M2904 and revealed two L. (V.) braziliensis pseudogenes that are likely to have coding potential in L. (V.) peruviana. Chromosomal read density and allele frequency profiling showed a heterogeneous pattern of aneuploidy with an overall disomic tendency in both L. (V.) peruviana isolates, in contrast with a trisomic pattern in the L. (V.) braziliensis M2904 reference. Read depth analysis allowed us to detect more than 368 gene expansions and 14 expanded gene arrays in L. (V.) peruviana, and the likely absence of expanded amastin gene arrays. Conclusions: The greater numbers of interspecific SNP/indel differences between L. (V.) peruviana and L. (V.) braziliensis and the presence of different gene and chromosome copy number variations support the classification of both organisms as closely related but distinct species. The extensive nucleotide polymorphisms and differences in gene and chromosome copy numbers in L. (V.) peruviana suggests the possibility that these may contribute to some of the unique features of its biology, including a lower pathology and lack of mucosal development.
AB - Background: The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.) peruviana and L. (V.) braziliensis. However, the genetic basis of these differences is not well understood and the status of L. (V.) peruviana as distinct species has been questioned by some. Here we sequenced the genomes of two L. (V.) peruviana isolates (LEM1537 and PAB-4377) using Illumina high throughput sequencing and performed comparative analyses against the L. (V.) braziliensis M2904 reference genome. Comparisons were focused on the detection of Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs), aneuploidy and gene copy number variations. Results: We found 94,070 variants shared by both L. (V.) peruviana isolates (144,079 in PAB-4377 and 136,946 in LEM1537) against the L. (V.) braziliensis M2904 reference genome while only 26,853 variants separated both L. (V.) peruviana genomes. Analysis in coding sequences detected 26,750 SNPs and 1,513 indels shared by both L. (V.) peruviana isolates against L. (V.) braziliensis M2904 and revealed two L. (V.) braziliensis pseudogenes that are likely to have coding potential in L. (V.) peruviana. Chromosomal read density and allele frequency profiling showed a heterogeneous pattern of aneuploidy with an overall disomic tendency in both L. (V.) peruviana isolates, in contrast with a trisomic pattern in the L. (V.) braziliensis M2904 reference. Read depth analysis allowed us to detect more than 368 gene expansions and 14 expanded gene arrays in L. (V.) peruviana, and the likely absence of expanded amastin gene arrays. Conclusions: The greater numbers of interspecific SNP/indel differences between L. (V.) peruviana and L. (V.) braziliensis and the presence of different gene and chromosome copy number variations support the classification of both organisms as closely related but distinct species. The extensive nucleotide polymorphisms and differences in gene and chromosome copy numbers in L. (V.) peruviana suggests the possibility that these may contribute to some of the unique features of its biology, including a lower pathology and lack of mucosal development.
UR - http://www.scopus.com/inward/record.url?scp=84961134653&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961134653&partnerID=8YFLogxK
U2 - 10.1186/s12864-015-1928-z
DO - 10.1186/s12864-015-1928-z
M3 - Article
C2 - 26384787
AN - SCOPUS:84961134653
VL - 16
JO - BMC genomics
JF - BMC genomics
SN - 1471-2164
IS - 1
M1 - 715
ER -