TY - JOUR
T1 - Cognitive flexibility training improves extinction retention memory and enhances cortical dopamine with and without traumatic stress exposure
AU - Chaby, Lauren E.
AU - Karavidha, Klevis
AU - Lisieski, Michael J.
AU - Perrine, Shane A.
AU - Liberzon, Israel
N1 - Funding Information:
We thank our funding sources, the US Department of Defense, Grant W81XWH-13-1-0377, awarded to IL, as well as an NIH R01, 1R01DA042057-01A1, awarded to SP.
Funding Information:
We thank all members of the Liberzon and Perrine laboratories, especially Kelly O’Donnel and Nirmala Rajaram. Funding. We thank our funding sources, the US Department of Defense, Grant W81XWH-13-1-0377, awarded to IL, as well as an NIH R01, 1R01DA042057-01A1, awarded to SP.
Publisher Copyright:
© 2019 Chaby, Karavidha, Lisieski, Perrine and Liberzon.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - Stress exposure can cause lasting changes in cognition, but certain individual traits, such as cognitive flexibility, have been shown to reduce the degree, duration, or severity of cognitive changes following stress. Both stress and cognitive flexibility training affect decision making by modulating monoamine signaling. Here, we test the role cognitive flexibility training, and high vs. low cognitive flexibility at the individual level, in attenuating stress-induced changes in memory and monoamine levels using the single prolonged stress (SPS) rodent model of traumatic stress in male Sprague-Dawley rats. Exposure to SPS can heighten fear responses to conditioned cues (i.e., freezing) after a fear association has been extinguished, referred to as a deficit in extinction retention. This deficit is thought to reflect an impairment in context processing that is characteristic of posttraumatic stress disorder (PTSD). During a cognitive flexibility training we assessed individual variability in cognitive skills and conditioned rats to discriminately use cues in their environment. We found that cognitive flexibility training, alone or followed by SPS exposure, accelerated extinction learning and decreased fear responses over time during extinction retention testing, compared with rats not given cognitive flexibility training. These findings suggest that cognitive flexibility training may improve context processing in individuals with and without traumatic stress exposure. Individual performance during the reversal phase of the cognitive flexibility training predicted subsequent context processing; individuals with high reversal performance exhibited a faster decrease in freezing responses during extinction retention testing. Thus, high reversal performance predicted enhanced retention of extinction learning over time and suggests that cognitive flexibility training may be a strategy to promote context processing. In a brain region vital for maintaining cognitive flexibility and fear suppression, the prelimbic cortex (PLC), cognitive flexibility training also lastingly enhanced dopamine (DA) and norepinephrine (NE) levels, in animals with and without traumatic stress exposure. In contrast, cognitive flexibility training prior to traumatic stress exposure decreased levels of DA and its metabolites in the striatum, a region mediating reflexive decision making. Overall, our results suggest that cognitive flexibility training can provide lasting benefits by enhancing extinction retention, a hallmark cognitive effect of trauma, and prelimbic DA, which can maintain flexibility across changing contexts.
AB - Stress exposure can cause lasting changes in cognition, but certain individual traits, such as cognitive flexibility, have been shown to reduce the degree, duration, or severity of cognitive changes following stress. Both stress and cognitive flexibility training affect decision making by modulating monoamine signaling. Here, we test the role cognitive flexibility training, and high vs. low cognitive flexibility at the individual level, in attenuating stress-induced changes in memory and monoamine levels using the single prolonged stress (SPS) rodent model of traumatic stress in male Sprague-Dawley rats. Exposure to SPS can heighten fear responses to conditioned cues (i.e., freezing) after a fear association has been extinguished, referred to as a deficit in extinction retention. This deficit is thought to reflect an impairment in context processing that is characteristic of posttraumatic stress disorder (PTSD). During a cognitive flexibility training we assessed individual variability in cognitive skills and conditioned rats to discriminately use cues in their environment. We found that cognitive flexibility training, alone or followed by SPS exposure, accelerated extinction learning and decreased fear responses over time during extinction retention testing, compared with rats not given cognitive flexibility training. These findings suggest that cognitive flexibility training may improve context processing in individuals with and without traumatic stress exposure. Individual performance during the reversal phase of the cognitive flexibility training predicted subsequent context processing; individuals with high reversal performance exhibited a faster decrease in freezing responses during extinction retention testing. Thus, high reversal performance predicted enhanced retention of extinction learning over time and suggests that cognitive flexibility training may be a strategy to promote context processing. In a brain region vital for maintaining cognitive flexibility and fear suppression, the prelimbic cortex (PLC), cognitive flexibility training also lastingly enhanced dopamine (DA) and norepinephrine (NE) levels, in animals with and without traumatic stress exposure. In contrast, cognitive flexibility training prior to traumatic stress exposure decreased levels of DA and its metabolites in the striatum, a region mediating reflexive decision making. Overall, our results suggest that cognitive flexibility training can provide lasting benefits by enhancing extinction retention, a hallmark cognitive effect of trauma, and prelimbic DA, which can maintain flexibility across changing contexts.
KW - Cognitive flexibility
KW - Dopamine
KW - Norepinephrine
KW - PTSD
KW - Single prolonged stress
KW - Trauma
UR - http://www.scopus.com/inward/record.url?scp=85064199843&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064199843&partnerID=8YFLogxK
U2 - 10.3389/fnbeh.2019.00024
DO - 10.3389/fnbeh.2019.00024
M3 - Article
AN - SCOPUS:85064199843
SN - 1662-5153
VL - 13
JO - Frontiers in Behavioral Neuroscience
JF - Frontiers in Behavioral Neuroscience
M1 - 24
ER -