Abstract
By inhibiting the tyrosine kinase (TK) activity of Bcr-Abl, STI-571 induces differentiation and apoptosis of HL-60/Bcr-Abl (with ectopic expression of p185 Bcr-Abl) and K562 (containing endogenous expression of p210 Bcr-Abl) but not of the control HL-60 cells. Treatment with arsenic trioxide (As2O3) lowers Bcr-Abl protein levels and induces apoptosis of the Bcr-Abl-positive leukemic blasts (Blood 2000; 95: 1014). Here, we demonstrate that compared to treatment with STI-571 (0.25 to 1.0 μM) or As2O3 (0.5 to 2.0 μM) alone, combined treatment with As2O3 and STI-571 induced significantly more apoptosis of HL-60/Bcr-Abl and K562 but not HL-60/neo cells (P < 0.05). Combined treatment with As2O3 and STI-571 also resulted in greater reductions in the levels of Bcl-xL, XIAP and Akt, and inhibition of Akt kinase activity. Co-treatment with As2O3 inhibited STI-571-induced hemoglobin, which was associated with the cleavage and downregulation of GATA-1 transcription factor involved in erythroid differentiation. These data demonstrate that a treatment strategy which combines an agent that lowers Bcr-Abl levels, eg As2O3, with an agent that inhibits Bcr-Abl TK activity, eg STI-571, can potently induce apoptosis and differentiation of Bcr-Abl-positive human leukemic cells.
Original language | English (US) |
---|---|
Pages (from-to) | 772-778 |
Number of pages | 7 |
Journal | Leukemia |
Volume | 15 |
Issue number | 5 |
DOIs | |
State | Published - 2001 |
Keywords
- AKT
- ASO
- Bcl-x
- Bcr-Abl
- STI-571
ASJC Scopus subject areas
- Hematology
- Cancer Research