Classification of finger vibrotactile input using scalp EEG

Yongtian He, Jose L. Contreras Vidal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

While there are many output brain-computer interface (output BCIs) studies, few have examined the input pathway, namely decoding the sensory input. To examine the possibility of building a BCI with sensory input using scalp electroencephalography (EEG), this study builds a classifier based on Local Fisher Discriminant Analysis (LFDA) and Gaussian Mixture Model (GMM) to classify neural activity generated by vibrotactile sensory stimuli delivered to the fingers. Small vibrators were placed on the fingertips of the participant. They vibrated one by one in a random sequence while the participant sat still with eyes closed. EEG data were recorded and later used to classify which finger was vibrated. There were two tasks: one focusing on differentiating between ipsilateral fingers, the other one focusing on differentiating contralateral fingers. Decoding accuracies were high in both tasks: 97.6% and 99.3% respectively. Event-related EEG features in both amplitude and power domain are discussed.

Original languageEnglish (US)
Title of host publicationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4717-4720
Number of pages4
Volume2015-November
ISBN (Print)9781424492718
DOIs
StatePublished - Nov 4 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period8/25/158/29/15

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Classification of finger vibrotactile input using scalp EEG'. Together they form a unique fingerprint.

Cite this