Abstract
We report that neurotrophin-3 (NT-3), delivered chronically via fibroblasts implanted intrathecally into neonatal rats, can facilitate synaptic transmission in the spinal cord. A small collagen plug containing NT-3-secreting fibroblasts was placed on the exposed dorsal surface of the spinal cord (L1) of 2-d-old rats; controls received β -galactosidase-secreting fibroblasts. After 6 hr to 12 d of survival, synaptic potentials (EPSP) elicited by two synaptic inputs, L5 dorsal root and ventrolateral funiculus (VLF), were recorded intracellularly in L5 motoneurons in vitro. Preparations treated with NT-3 implants exhibited enhanced monosynaptic synaptic transmission from both inputs, which persisted over the entire testing period. Unlike acute enhancement of transmission by NT-3 (Arvanian and Mendell, 2001a), the chronic effect could occur at connections not normally eliciting an NMDA receptor-mediated response at the time of NT-3 exposure. Using susceptibility to blockade of the NMDA receptor by Mg 2+ and APV, we confirmed that chronic treatment with NT-3 did not enhance NMDA receptor activity at these connections. Cords treated with chronic NT-3 also transiently displayed polysynaptic components activated by VLF that were blocked by the NMDA receptor antagonist APV. These novel NMDA receptor-mediated potentials may reflect changes in interneurons near the site of fibroblast implantation. We conclude that chronic NT-3 enhances the potency of segmental and descending projections via mechanisms different from those underlying acute changes.
Original language | English (US) |
---|---|
Pages (from-to) | 8706-8712 |
Number of pages | 7 |
Journal | Journal of Neuroscience |
Volume | 23 |
Issue number | 25 |
DOIs | |
State | Published - Sep 24 2003 |
Keywords
- Development
- Genetically engineered fibroblasts
- Motor neuron
- NT-3
- Neonatal rat
- Neurotrophin
- Plasticity
- Spinal cord
- Synaptic transmission
ASJC Scopus subject areas
- General Neuroscience