Chemically-selective imaging of brain structures with CARS microscopy

Conor L. Evans, Xiaoyin Xu, Santosh Kesari, X. Sunney Xie, Stephen T.C. Wong, Geoffrey S. Young

Research output: Contribution to journalArticlepeer-review

217 Scopus citations


We demonstrate the use of coherent anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although non-invasive clinical brain imaging with CT, MRI and PET has transformed the diagnosis of neurologic disease, definitive pre-operative distinction of neoplastic and benign pathologies remains elusive. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy, a nonlinear, vibrationally-sensitive technique, is capable of high-sensitivity chemically-selective three-dimensional imaging without exogenous labeling agents. Like MRI, CARS can be tuned to provide a wide variety of possible tissue contrasts, but with sub-cellular spatial resolution and near real time temporal resolution. These attributes make CARS an ideal technique for fast, minimally invasive, non-destructive, molecularly specific intraoperative optical diagnosis of brain lesions. This promises significant clinical benefit to neurosurgical patients by providing definitive diagnosis of neoplasia prior to tissue biopsy or resection. CARS imaging can augment the diagnostic accuracy of traditional frozen section histopathology in needle biopsy and dynamically define the margins of tumor resection during brain surgery. This report illustrates the feasibility of in vivo CARS vibrational histology as a clinical tool for neuropathological diagnosis by demonstrating the use of CARS microscopy in identifying normal brain structures and primary glioma in fresh unfixed and unstained ex vivo brain tissue.

Original languageEnglish (US)
Pages (from-to)12076-12087
Number of pages12
JournalOptics Express
Issue number19
StatePublished - Sep 17 2007

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Chemically-selective imaging of brain structures with CARS microscopy'. Together they form a unique fingerprint.

Cite this