TY - JOUR
T1 - Characterization of M-Type-Specific Pilus Expression in Group A Streptococcus
AU - Roshika, Roshika
AU - Jain, Ira
AU - Glenaldo, Theodore
AU - Sickler, Tyler
AU - Musser, James M.
AU - Sumby, Paul
N1 - Funding Information:
The research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH) under award numbers R21AI139400 and R21AI148813 (to P.S.).
Publisher Copyright:
© 2022 American Society for Microbiology.
PY - 2022/11
Y1 - 2022/11
N2 - In addition to providing a typing mechanism for group A Streptococcus (GAS) isolates (T typing), cell surface pilus production impacts GAS virulence characteristics, including adherence and immune evasion. The pilus biosynthesis genes are located in the fibronectin- and collagen-binding T-antigen (FCT) region of the genome, and nine different FCT types, encoding more than 20 different T types, have been described. GAS isolates are not uniform in their degree or pattern of pilus expression, as highlighted by pilus production being thermoregulated in isolates that harbor the FCT-type FCT-3 (e.g., M-types M3 and M49) but not in isolates that harbor FCT-2 (e.g., M-type M1). Here, we investigated the molecular basis underlying our previous finding that M3 GAS isolates produce pili in lower abundance than M1 or M49 isolates do. We discovered that, at least in part, the low pilus expression observed for M3 isolates is a consequence of the repression of pilus gene expression by the CovR/CovS two-component regulatory system and of an M3-specific mutation in the nra gene, encoding a positive regulator of pilus gene expression. We also discovered that the orthologous transcriptional regulators RofA and Nra, whose encoding genes are located within FCT-2 and FCT-3, respectively, are not functionally identical. Finally, we sequenced the genome of an M3 isolate that had naturally undergone recombinational replacement of the FCT region, changing the FCT and T types of this strain from FCT-3/T3 to FCT-2/T1. Our study furthers the understanding of strain- and type-specific variation in virulence factor production by an important human pathogen. IMPORTANCE Our ability to characterize how a pathogen infects and causes disease, and consequently our ability to devise approaches to prevent or attenuate such infections, is inhibited by the finding that isolates of a given pathogen often show phenotypic variability, for example, in their ability to adhere to host cells through modulation of cell surface adhesins. Such variability is observed between isolates of group A Streptococcus (GAS), and this study investigates the molecular basis for why some GAS isolates produce pili, cell wall-anchored adhesins, in lower abundance than other isolates do. Given that pili are being considered as potential antigens in formulations of future GAS vaccines, this study may inform vaccine design.
AB - In addition to providing a typing mechanism for group A Streptococcus (GAS) isolates (T typing), cell surface pilus production impacts GAS virulence characteristics, including adherence and immune evasion. The pilus biosynthesis genes are located in the fibronectin- and collagen-binding T-antigen (FCT) region of the genome, and nine different FCT types, encoding more than 20 different T types, have been described. GAS isolates are not uniform in their degree or pattern of pilus expression, as highlighted by pilus production being thermoregulated in isolates that harbor the FCT-type FCT-3 (e.g., M-types M3 and M49) but not in isolates that harbor FCT-2 (e.g., M-type M1). Here, we investigated the molecular basis underlying our previous finding that M3 GAS isolates produce pili in lower abundance than M1 or M49 isolates do. We discovered that, at least in part, the low pilus expression observed for M3 isolates is a consequence of the repression of pilus gene expression by the CovR/CovS two-component regulatory system and of an M3-specific mutation in the nra gene, encoding a positive regulator of pilus gene expression. We also discovered that the orthologous transcriptional regulators RofA and Nra, whose encoding genes are located within FCT-2 and FCT-3, respectively, are not functionally identical. Finally, we sequenced the genome of an M3 isolate that had naturally undergone recombinational replacement of the FCT region, changing the FCT and T types of this strain from FCT-3/T3 to FCT-2/T1. Our study furthers the understanding of strain- and type-specific variation in virulence factor production by an important human pathogen. IMPORTANCE Our ability to characterize how a pathogen infects and causes disease, and consequently our ability to devise approaches to prevent or attenuate such infections, is inhibited by the finding that isolates of a given pathogen often show phenotypic variability, for example, in their ability to adhere to host cells through modulation of cell surface adhesins. Such variability is observed between isolates of group A Streptococcus (GAS), and this study investigates the molecular basis for why some GAS isolates produce pili, cell wall-anchored adhesins, in lower abundance than other isolates do. Given that pili are being considered as potential antigens in formulations of future GAS vaccines, this study may inform vaccine design.
KW - Streptococcus pyogenes
KW - gene regulation
KW - pili
KW - strain variation
UR - http://www.scopus.com/inward/record.url?scp=85142400502&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142400502&partnerID=8YFLogxK
U2 - 10.1128/jb.00270-22
DO - 10.1128/jb.00270-22
M3 - Article
C2 - 36286511
AN - SCOPUS:85142400502
SN - 0021-9193
VL - 204
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 11
ER -