TY - JOUR
T1 - Cardiovascular CT angiography in neonates and children
T2 - Image quality and potential for radiation dose reduction with iterative image reconstruction techniques
AU - Tricarico, Francesco
AU - Hlavacek, Anthony M.
AU - Schoepf, U. Joseph
AU - Ebersberger, Ullrich
AU - Nance, John W.
AU - Vliegenthart, Rozemarijn
AU - Cho, Young Jun
AU - Spears, J. Reid
AU - Secchi, Francesco
AU - Savino, Giancarlo
AU - Marano, Riccardo
AU - Schoenberg, Stefan O.
AU - Bonomo, Lorenzo
AU - Apfaltrer, Paul
PY - 2013/5
Y1 - 2013/5
N2 - Objectives: To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Methods: Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Results: Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. Conclusions: IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. Key Points: • Iterative reconstruction techniques significantly improve non-invasive cardiovascular CT in children. • Using half traditional radiation dose image quality is higher with iterative reconstruction. • Iterative reconstruction techniques may allow further radiation reductions in paediatric cardiovascular CT.
AB - Objectives: To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Methods: Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Results: Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. Conclusions: IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. Key Points: • Iterative reconstruction techniques significantly improve non-invasive cardiovascular CT in children. • Using half traditional radiation dose image quality is higher with iterative reconstruction. • Iterative reconstruction techniques may allow further radiation reductions in paediatric cardiovascular CT.
KW - Computed tomography
KW - Congenital heart disease
KW - Iterative image reconstruction
KW - Pediatric imaging
KW - Radiation dose
UR - http://www.scopus.com/inward/record.url?scp=84877154860&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877154860&partnerID=8YFLogxK
U2 - 10.1007/s00330-012-2734-5
DO - 10.1007/s00330-012-2734-5
M3 - Article
C2 - 23207869
AN - SCOPUS:84877154860
SN - 0938-7994
VL - 23
SP - 1306
EP - 1315
JO - European Radiology
JF - European Radiology
IS - 5
ER -