Candesartan cilexetil protects from cardiac myosin induced cardiotoxicity via reduction of endoplasmic reticulum stress and apoptosis in rats: Involvement of ACE2-Ang (1-7)-mas axis

Somasundaram Arumugam, Rajarajan A. Thandavarayan, Suresh S. Palaniyandi, Vijayasree V. Giridharan, Wawaimuli Arozal, Flori R. Sari, Vivian Soetikno, Meilei Harima, Kenji Suzuki, Makoto Kodama, Kenichi Watanabe

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Candesartan cilexetil, an angiotensin (Ang) II receptor 1 blocker was reported to suppress the myocardial damage in various cardiovascular complications but the mode by which it is effective in preventing the progression of dilated cardiomyopathy (DCM) is unknown. Emerging evidences suggest that, at least, part of the benefits observed with the use of AT1 receptor blockers could be attributed to the increased Ang (1-7) levels observed during administration of these agents. Identification of the novel components of the RAS, ACE2 and Ang (1-7) receptor mas, provided essential elements for considering the existence of a vasodilator arm of the RAS, represented by the ACE2-Ang (1-7)-mas axis. In this study, rat model of DCM was prepared by injection with porcine cardiac myosin. Twenty-eight days after immunization, candesartan cilexetil was administered intraperitoneally at 1 or 10. mg/kg/day to rats for four weeks. Myocardial expression of Ang receptors and markers of calcium homeostasis, endoplasmic reticulum (ER) stress and apoptosis were measured by Western blotting and histopathological staining techniques. Candesartan improved the functional markers in a dose-dependent manner and also upregulated Ang (1-7), ACE2 and mas1 in the myocardium of DCM rats. Various ER stress and apoptosis markers were attenuated and the number apoptotic cells were significantly lower in the candesartan treated rats compared with those of the vehicle group. These findings suggest that candesartan treatment prevented the progression of DCM by activation of the counter regulatory arm of the RAS and possibly through modulation of ER stress and subsequently, cardiac apoptosis.

Original languageEnglish (US)
Pages (from-to)139-145
Number of pages7
JournalToxicology
Volume291
Issue number1-3
DOIs
StatePublished - Jan 27 2012

Keywords

  • Ang (1-7)
  • Candesartan cilexetil
  • Cardioprotection
  • Heart failure
  • Mas

ASJC Scopus subject areas

  • Toxicology

Fingerprint Dive into the research topics of 'Candesartan cilexetil protects from cardiac myosin induced cardiotoxicity via reduction of endoplasmic reticulum stress and apoptosis in rats: Involvement of ACE2-Ang (1-7)-mas axis'. Together they form a unique fingerprint.

Cite this