Biomechanical Analysis of Anteroinferior Bankart Repair Anchor Types

Adam B. Yanke, Sachin Allahabadi, Zachary Wang, Kevin T. Credille, Elizabeth Shewman, Joao Artur Bonadiman, Tristan J. Elias, Mario Hevesi, Grant E. Garrigues, Nikhil N. Verma

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Background: All-suture anchors and knotless anchors are increasingly used in the repair of anteroinferior labral tears in patients with shoulder instability. Optimal repair constructs may limit recurrent instability. Purpose: To perform a quantitative biomechanical comparison of 3 labral fixation devices for soft tissue Bankart lesions: knotless soft-body tensionable anchor (SB knotless), knotted soft-body anchor (SB knotted), and knotless hard-body PEEK (polyether ether ketone) interference anchor (HB knotless). Study Design: Controlled laboratory study. Methods: A total of 21 glenoid specimens were randomized into 3 groups: SB knotless, SB knotted, and HB knotless. Artificial Bankart lesions were created at the anteroinferior labrum. Anchors were placed at the 3:30, 4:30, and 5:30 clockface positions, and sutures were passed through 1 cm of tissue. Anchors were tested simultaneously as one construct by pulling capsular tissue connected to the anteroinferior quadrant. Cyclic loading (5-25 N, 100 cycles) was followed by load-to-failure testing (15 mm/min). Biomechanical testing variables were collected, and failure mechanisms were recorded per individual anchor. Results: There were no differences in baseline specimen characteristics. There was no difference in elongation during cyclic loading (P =.40). The ultimate load to failure between SB knotless (309.7 ± 125.6 N), SB knotted (226.4 ± 34.8 N), and HB knotless (256.5 ± 90.5 N) did not significantly differ (P =.25). Failure mechanisms differed among groups (P =.008); mechanisms included anchor pullout (SB knotless: 33.3%; SB knotted: 23.8%; HB knotless: 28.6%), suture pull-through (SB knotless: 66.7%; SB knotted: 38.1%; HB knotless: 33.3%), and anchor fixation method failure, defined as knot failure for knotted anchors or locking mechanism failure for knotless anchors (SB knotless: 0.0%; SB knotted: 38.1%; HB knotless: 38.1%).) Conclusion: The SB knotless, SB knotted, and HB knotless labral fixation anchors studied exhibited comparable elongation during cyclic loading, stiffness, and ultimate loads to failure in a cadaveric model. However, the failure mechanisms significantly differed, as SB knotless anchors failed primarily from suture pull-through, while SB knotted and HB knotless anchors were subject to knot failure and locking mechanism failure, respectively. Clinical Relevance: These data support the benefit of SB knotless anchors for anteroinferior labral repair in limiting knot failure typically seen with knotted anchors, perhaps demonstrating that all-suture anchors may have better locking mechanism quality than their PEEK counterparts.

Original languageEnglish (US)
Pages (from-to)2642-2649
Number of pages8
JournalAmerican Journal of Sports Medicine
Volume51
Issue number10
DOIs
StatePublished - Aug 2023

Keywords

  • anchor
  • glenoid
  • labral repair
  • shoulder instability

ASJC Scopus subject areas

  • Physical Therapy, Sports Therapy and Rehabilitation
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Biomechanical Analysis of Anteroinferior Bankart Repair Anchor Types'. Together they form a unique fingerprint.

Cite this