Biodegradable cationic ε-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent

Ruifang Zhao, Hai Wang, Tianjiao Ji, Greg Anderson, Guangjun Nie, Yuliang Zhao

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

Biocompatible and biodegradable ε-poly-l-lysine (EPL)/poly (ε-caprolactone) (PCL) copolymer was designed and synthesized. The amphiphilic EPL–PCL copolymer could easily self-assembled into monodispersed nanoparticles (NPs), which showed a broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Interestingly, the antibacterial efficacy of the novel NPs is more potent than the cationic peptide EPL. To explore the underlying mechanism of the biodegradable cationic NPs, various possible antibacterial pathways have been validated. The NPs have been found that they can disrupt bacterial walls/membranes and induce the increasing in reactive oxygen species and alkaline phosphatase levels. More importantly, the self-assembled NPs induced the changes in bacterial osmotic pressure, resulting in cell invagination to form holes and cause the leakage of cytoplasm. Taken together, our results suggest that the EPL–PCL NPs can be further developed to be a promising antimicrobial agent to treat infectious diseases as surfactants and emulsifiers to enhance drug encapsulation efficiency and antimicrobial activity.

Original languageEnglish (US)
Pages (from-to)216-226
Number of pages11
JournalScience Bulletin
Volume60
Issue number2
DOIs
StatePublished - Jan 9 2015

Keywords

  • Biodegradable cationic nanoparticles
  • Broad-spectrum antibacterial activity
  • Cell invagination
  • Disruption of bacterial walls/membranes
  • EPL–PCL copolymers

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Biodegradable cationic ε-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent'. Together they form a unique fingerprint.

Cite this