Abstract
Free-standing optical hybrid film which is composed of positively-charged polyethylenimine-coated NaYF4:Yb,Er nanoparticles and negatively-charged graphene oxide (GO) has been developed to measure pH based on the pH-dependent luminescence quenching effect caused by GO. The isothermal titration calorimetry analyses indicate that the interaction between GO and NaYF4:Yb,Er nanoparticles becomes stronger with increasing pH, leading to a more significant fluorescence quenching of NaYF4:Yb,Er nanoparticles at high pH values. The excellent mechanical properties of the hybrid film endow the thin-film pH sensor with better repeatability and higher stability during the measurements. Quantitatively, the upconversion luminescence intensity of the hybrid film exhibits a linear trend over the pH range of 5.00-8.00. Because of excitation with a 980 nm laser, as expected, the hybrid film sensor is also sensitive to the urine measurements with reduced background absorption. In addition to its good biocompatibility, our free-standing hybrid film sensor would be a promising candidate for biological, medical, and pharmaceutical applications.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 1576-1582 |
| Number of pages | 7 |
| Journal | Physical Chemistry Chemical Physics |
| Volume | 16 |
| Issue number | 4 |
| DOIs | |
| State | Published - Jan 28 2014 |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry