Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

Ali H. Palejwala, Jared S. Fridley, Javier A. Mata, Errol L.G. Samuel, Thomas G. Luerssen, Laszlo Perlaky, Thomas A. Kent, James M. Tour, Andrew Jea

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neuroflaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have signifcant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.

Original languageEnglish (US)
Article number188905
JournalSurgical Neurology International
Volume7
Issue number1
DOIs
StatePublished - Jan 1 2016

Keywords

  • Biocompatibility
  • Cytotoxicity
  • Graphene
  • Nanomedicine
  • Neuron
  • Spinal cord injury

ASJC Scopus subject areas

  • Surgery
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats'. Together they form a unique fingerprint.

Cite this