Bioactive hydrogels with enhanced initial and sustained cell interactions

Mary Beth Browning, Brooke Russell, Jose Rivera, Magnus Höök, Elizabeth M. Cosgriff-Hernandez

    Research output: Contribution to journalArticlepeer-review

    33 Scopus citations

    Abstract

    The highly tunable properties of poly(ethylene glycol) (PEG)-based hydrogel systems permit their use in a wide array of regenerative medicine and drug delivery applications. One of the most valuable properties of PEG hydrogels is their intrinsic resistance to protein adsorption and cell adhesion, as it allows for a controlled introduction of desired bioactive factors including proteins, peptides, and drugs. Acrylate-PEG-N-hydroxysuccinimide (Acr-PEG-NHS) is widely utilized as a PEG linker to functionalize bioactive factors with photo-cross-linkable groups. This enables their facile incorporation into PEG hydrogel networks or the use of PEGylation strategies for drug delivery. However, PEG linkers can sterically block integrin binding sites on functionalized proteins and reduce cell-material interactions. In this study we demonstrate that reducing the density of PEG linkers on protein backbones during functionalization results in significantly improved cell adhesion and spreading to bioactive hydrogels. However, this reduction in functionalization density also increases protein loss from the matrix over time due to ester hydrolysis of the Acr-PEG-NHS linkers. To address this, a novel PEG linker, acrylamide-PEG-isocyanate (Aam-PEG-I), with enhanced hydrolytic stability was synthesized. It was found that decreasing functionalization density with Aam-PEG-I resulted in comparable increases in cell adhesion and spreading to Acr-PEG-NHS systems while maintaining protein and bioactivity levels within the hydrogel network over a significantly longer time frame. Thus, Aam-PEG-I provides a new option for protein functionalization for use in a wide range of applications that improves initial and sustained cell-material interactions to enhance control of bioactivity.

    Original languageEnglish (US)
    Pages (from-to)2225-2233
    Number of pages9
    JournalBiomacromolecules
    Volume14
    Issue number7
    DOIs
    StatePublished - Jul 8 2013

    ASJC Scopus subject areas

    • Bioengineering
    • Biomaterials
    • Polymers and Plastics
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Bioactive hydrogels with enhanced initial and sustained cell interactions'. Together they form a unique fingerprint.

    Cite this