Biliverdin therapy protects rat livers from ischemia and reperfusion injury

Constantino Fondevila, Xiu Da Shen, Seiichiro Tsuchiyashi, Kenichiro Yamashita, Eva Csizmadia, Charles Lassman, Ronald W. Busuttil, Jerzy W. Kupiec-Weglinski, Fritz H. Bach

Research output: Contribution to journalArticlepeer-review

146 Scopus citations

Abstract

Heme oxygenase (HO-1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate-limiting step in heme metabolism that produces biliverdin (BV). The role of BV and its potential use in preventing ischemia/reperfusion injury (IRI) had never been studied. This study was designed to explore putative cytoprotective functions of BV during hepatic IRI in rat liver models of ex vivo perfusion and orthotopic liver transplantation (OLT) after prolonged periods of cold ischemia. In an ex vivo hepatic IRI model, adjunctive BV improved portal venous blood flow, increased bile production, and decreased hepatocellular damage. These findings were correlated with amelioration of histological features of IRI, as assessed by Suzuki's criteria. Following cold ischemia and syngeneic OLT, BV therapy extended animal survival from 50% in untreated controls to 90% to 100%. This effect correlated with improved liver function and preserved hepatic architecture. Additionally, BV adjuvant after OLT decreased endothelial expression of cellular adhesion molecules (P-selectin and intracellular adhesion molecule 1), and decreased the extent of infiltration by neutrophils and inflammatory macrophages. BV also inhibited expression of inducible nitric oxide synthase and proinflammatory cytokines (interleukin 1β, tumor necrosis factor α, and interleukin 6) in OLTs. Finally, BV therapy promoted an increased expression of antiapoptotic molecules independently of HO-1 expression, consistent with BV being an important mediator through which HO-1 prevents cell death. In conclusion, this study documents and dissects potent cytoprotective effects of BV in well-established rat models of hepatic IRI. Our results provide the rationale for a novel therapeutic approach using BV to maximize the function and thus the availability of donor organs.

Original languageEnglish (US)
Pages (from-to)1333-1341
Number of pages9
JournalHepatology
Volume40
Issue number6
DOIs
StatePublished - Dec 2004

ASJC Scopus subject areas

  • Hepatology

Fingerprint

Dive into the research topics of 'Biliverdin therapy protects rat livers from ischemia and reperfusion injury'. Together they form a unique fingerprint.

Cite this